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Abstract 
 
Life cycle impact assessment (LCIA) models regarding land use impacts are usually proxy-based 

models that lack regionalization or sufficient land use classes. In this dissertation, we introduce a 

paradigm shift from proxy-based to process-based models, by calculating biogeographically 

differentiated characterization factors (CF). The goal of the dissertation was to test the potential 

viability and accuracy of two spatially explicit process-based models to simulate soil dynamics, 

namely RothC and Denitrification Decomposition model (DNDC), which may enable an 

assessment based on scenarios to provide more accurate CFs for soil quality. Also, this 

dissertation tested the computational limitations of these process-based models when applied to 

LCIA. We proposed one LCIA midpoint method for land use impacts using Soil Organic Carbon 

(SOC) as an indicator on soil quality and used the region of Alentejo (Portugal) as a proof of 

concept. An additional advantage of using process-based models was that it enabled us to build 

scenarios that explicitly take into consideration expected future changes in temperature and 

precipitation under climate change.  

In this dissertation, we present all the datasets necessary to run the models and their 

implementation. We also provide a sensitivity analysis of input parameters for the RothC model. 

A methodology that allows the calculation of CF’s obtained through results of RothC model is 

described. In the end the CFs are presented and compared with alternative models obtained in 

the literature. 

 

Keywords: Life Cycle Impact Assessment, RothC model, DNDC model, Soil Organic Carbon, 

Characterization Factors 
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Resumo 
 

Os modelos de avaliação de impacte em ciclo de vida (AICV) para determinação dos efeitos do 

uso do solo são, geralmente, modelos proxy que carecem de regionalizações e classes 

adicionais de uso do solo. Nesta dissertação, propomos uma mudança de paradigma na 

modelação do uso do solo em AICV calculando fatores de caracterização (FC) diferenciados 

biogeograficamente com recurso a modelos de solo baseados em processos. O objetivo desta 

dissertação é testar a potencial viabilidade e precisão de dois modelos baseados em processos 

espacialmente explícitos para simular a dinâmica de acumulação da matéria orgânico no solo, 

nomeadamente RothC e o modelo de Decomposição por Desnitrificação (DNDC), que poderão 

permitir uma avaliação baseada em cenários para fornecer FCs mais precisos para a qualidade 

do solo. Além disso, nesta dissertação foram testadas as limitações computacionais destes 

modelos baseados em processos quando aplicados ao LCIA. Propõe-se um método midpoint de 

LCIA para o impacto do uso do solo utilizando carbono orgânico do solo (COS) como indicador 

da qualidade do solo e usando a região do Alentejo (Portugal) como prova de conceito. Uma 

outra vantagem em utilizar modelos baseados em processos é que permite a construção de 

cenários que têm em conta, explicitamente, mudanças futuras esperadas de temperatura e 

precipitação sob mudanças climáticas. 

Nesta dissertação, apresentamos todos os conjuntos de dados necessários para correr os 

modelos e a sua implementação. Além disso, é fornecida uma análise de sensibilidade dos 

parâmetros de entrada para o modelo RothC. O método que permite o cálculo de FCs obtidos 

através dos resultados do modelo RothC é descrito. Por fim, os FCs são apresentados e 

comparados com modelos alternativos obtidos na literatura. 

 

Palavras-Chave: Avaliação de impacte em ciclo de vida, Modelo RothC, Modelo DNDC, 

Carbono Orgânico do Solo, Fatores de Caracterização 
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1. Introduction 

1.1 Overview 

Sustainable food and animal feed production are major challenges posed to our societies. The 

United Nations (UN) estimate that world population will increase to 9.7 billion people in 2050 and 

to 11.2 billion people in 2100 (UN, 2015). With the expansion of world population, the demand for 

natural resources, including soil support, provision and regulation services, is also going to 

increase. By 2050 agricultural production must increase by 60 percent to satisfy the expected 

demand for food and feed (FAO, 2014). Pressures such as soil degradation, groundwater 

depletion and extreme weather events create a problem that needs to be solved by enabling 

sustainable production of food and feed and the control of drivers of environmental damage, such 

as greenhouse gases (GHG) emissions, while achieving the Millennium Development Goal of 

ending hunger (Godfray et al., 2010). 

Incorrect and intensive agricultural practices originated environmental issues such as water 

depletion, soil erosion and degradation, pollution, climate change, biodiversity loss, among others 

(Kutsch et al., 2009). Agriculture (including crop and livestock production), forestry and associated 

land use (LU) transitions (e.g. from agricultural to forest) are responsible for GHG emissions - 

about 20-24% of the total worldwide emissions (FAO, 2014). Land management practices such 

as tillage, fertilization, residue management and manure application may have a strong effect on 

carbon stocks. It is important to promote good management strategies in order to prevent soil 

degradation and assist with mitigation and adaptation of climate change (Godfray et al., 2010). 

To understand how agricultural practices affect production and environmental variables, it is 

essential to know how to achieve greater yields without compromising the environment (Tilman 

et al., 2011).  

Another common concern is the increase of competition between the food sector and the 

bioenergy sector (biofuels) due to the necessity of accommodating bioenergy crops on land that 

was or could potentially be used for food and feed production. This demand for bioenergy crops 

may lead to an increase of food prices (Popp et al., 2014). In addition, climate changes are likely 

to increase land degradation (WMO, 2005). It is then probable that the demand for food and feed, 

though increasing, will have to be met in an equal amount (or lower) of the land available 

nowadays (Godfray et al., 2010). 

While these problems are becoming more widely recognized, experts, governments and the 

population in general are becoming more concerned. There is a change in habits and perceptions 

that influences consumer choices and is increasingly conducive to environmental protection 

(Sengstschmid et al., 2011). Agri-food products are no exception. With this increased interest for 

environmental protection, there is an effort to lead the world into a greener economy, defined by 

the United Nations Environment Programme (UNEP) as “one that results in improved human well-

being and social equity, while significantly reducing environmental risks and ecological scarcities” 

(UNEP, 2010). Such effort established an opportunity of effective marketing, strategic planning, 

environmental performance and development improvement for products. Companies started to 
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present their products as “environmentally friendly”. To regulate such initiatives and further take 

advantage of this opportunity, environmental labels and declarations were created. These labels 

aim to help consumers differentiate between green or non-green products in order to capture 

consumer interest, to improve the products and services and to boost profits and competitiveness 

(EC-JRC, 2011), while preventing abuses and establishing confidence in claims of environmental 

quality. 

There are three major voluntary environmental labelling types according to International Standard 

Organization (ISO) 14020 (ISO 14020, 2000): Type I – is assessed by a third-party and based on 

different attributes; Type II – self-declaration based on one attribute; Type III – based on the life 

cycle of a product and verified by a third party. The latter are also known as Environmental Product 

Declarations (EDP’s) (ISO 14020, 2000). All of these labels involve the application of life cycle 

thinking (LCT) to products or services.  

1.2 Life cycle thinking 

LCT is a way to get better and more informed decisions for the incorporation of sustainability 

accounting of the environmental, social and economic impacts of a product or service over its 

entire life cycle. It is a step forward from approaches that are only concerned with resolving 

problems on one specific source of pollution within the product’s life cycle (i.e. discharge of a 

pollutant to a river) (UNEP, 2012) and is one of the main concepts supporting Life Cycle 

Assessment (LCA). 

Governments, businesses and the population, by taking a life cycle perspective of a product or 

service, can lead the society towards a greener economy. LCT helps to understand the 

environmental performance of products throughout their life cycle (Mont et al., 2007). By doing 

so, decision-makers have a holistic picture of an entire product or service system. Consequently, 

the main objective of LCT and one of its main advantages is to avoid burden shifting (Hellweg 

and Milà i Canals, 2014). This means that there is a concern for minimising impacts in a specific 

place and impact category (e.g. climate change) without increasing those impacts elsewhere, or  

in another category (e.g. biodiversity) (EC, 2010). In environmental declarations, using LCT is 

crucial as a mechanism that prevents “green washing” or resource waste, as companies who 

focus on single stage evaluations may be misdirected by their own preconceptions about where 

the environmental hotspots lie within their value chain. 

LCT has been used as an important element in different policy instruments such as for the 

Thematic Strategy on the Sustainable Use of Natural Resources, Waste Framework Directive, 

the EU Ecolabel Regulation, Environmental Technology Verification Scheme (ETV), ECOdesign 

Directive, EMAS III Regulation and on the ISO 14000 family. It has been used to assess policy 

options, but also to assess sustainable production and consumption (EC-JRC, 2011). More 

recently, ISO 14001 revised in 2015 that addresses Environmental Management Systems, added 

life cycle perspective to the current requirements, so that organizations extend their scope to each 

step of the life cycle design of products and their development (ISO 14001, 2015).  Currently, the 

only officially standardized method that assesses a range of potential environmental performance 
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and associated impacts of services and products is the ISO 14044 (Lehmann et al., 2015a), a 

standard that introduced LCT by using LCA as its basis. 

1.3 Life Cycle Assessment 

LCA is an environmental management technique widely used in many sectors to support decision-

making (Roy et al., 2009; Ferrão, 2009). It is used to study a product system or service’s 

environmental aspects and potential impacts starting from raw material acquisition then 

production, use and disposal. Later developments are allowing also the assessment of social and 

economic aspects (Hellweg and Milà i Canals, 2014; Guinée et al., 2011). It is a tool that has 

been proven effective for the identification and comparison of impacts generated by different 

product systems (Peano et al., 2012; Mungkung et al., 2006) and may be used for different ends 

such as product development and improvement, strategic planning, public policy-making, 

marketing and improvement of environmental performance (ISO 14040, 2006). The European 

Commission (EC) recognizes LCA as the best framework currently available to assess the 

environmental impacts of products (Commission of the European Communities, 2003). According 

with ISO 14040 (2006) the process of LCA has four major phases: goal and scope definition, life 

cycle inventory (LCI) analysis, life cycle impact assessment (LCIA) and interpretation as 

described in figure 1. 

The goal and scope definition phase determines aspects such as the decision context, intended 

applications and approaches (e.g. LCIA methods to be applied), the product system boundaries, 

the environmental impacts to be assessed and the functional unit (FU) that provides a reference 

unit for comparison of alternative products or services. 

In the LCI phase data is compiled and is usually the phase that requires more time to be 

completed. It is an iterative phase that allows the quantification of the system flows. 

The LCIA phase results in the evaluation of the products LCI regarding different impact 

categories. As justified later, the present dissertation focuses in particular in this stage. 

The interpretation phase integrates insights from all of the other stages, in order to report the 

results in the most informative way possible and assist decision-making. This phase addresses 

the uncertainty and accuracy of the results. 
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Figure 1- Stages of an LCA study (adapted from ISO 14040:2006). 

 

1.3.1 LCIA phase 

The ISO 14044:2006 divides the LCIA stage in four major phases: 

 Selection of impact categories, categories indicators and characterization models 

- the impact categories are classes that represent environmental issues and are defined 

by their impact pathway and impact indicator. An example of an impact category is, 

according to IPCC (IPPC, 2007), global warming potential, where the indicator is kg 

CO2eq. The LCI flows are assigned to the impact categories. The indicator results 

aggregated by impact category later enable the analysis of the environmental issues 

associated with the product system (ISO 14042:2006). 

 Characterisation - where LCI results are converted to common units by applying 

characterization factors (CF) and are aggregated within the same impact category. These 

CFs express a change (positive or negative) of a property and are used to convert the 

life cycle results into a common unit. They reflect the contribution of each LCI flow in the 

impact category. The CFs are derived from characterization models used to assess 

environmental damages (e.g. the contribution of each GHG to climate change is 

determined using a characterization model).  

 Normalisation – it is where the magnitude of impact indicator results in each impact 

category is calculated by dividing the indicator result by a reference value. This phase is 

usually optional. 

 Weighting – it is the phase where the normalised results of each impact category are 

converted by applying a weighting factor based on value-choices. Like normalisation, this 

phase is usually optional. 
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Impact categories can report LCA results as endpoint or midpoint indicators. The impact 

categories addressed depend on the LCIA method chosen. There are several LCIA methods 

available, such as ReCiPe (Goedkoop et al., 2013), Eco Indicator 99 (Goedkoop et al., 2000), 

and ILCD (EC-JRC, 2011). Each method can differ widely, recommending different models for 

the assessment of similar impact categories (Roy et al., 2009). 

Midpoint impact categories (problem-oriented approach) consider a point prior to the endpoint in 

the cause-effect chains correspondent to a particular impact category (Bare et al., 2000). Endpoint 

categories (damage-oriented approach) reflect causes of concern such as natural environment, 

human health or natural resources (ISO 14044, 2006). Endpoint indicators are calculated using 

midpoint indicator results (e.g. by characterizing the role of emissions with global warming 

potential, a midpoint impact category, on ecosystem quality, an endpoint). If the midpoint level is 

chosen, then the results of the calculations of the intermediary indicators will be more accurate, 

although their transition to endpoint indicators is more difficult since they involve more 

assumptions and value judgments. On the other hand, if the endpoint level is chosen, then the 

endpoint indicators will be easier to interpret, although they are harder to calculate and thereby 

are less accurate than the intermediary (midpoint) indicators (Ferrão, 2009). 

Many different LCIA models have been proposed for the calculations of the same impact 

categories. Each methodology has different outputs and assesses different environmental 

indicators (Hellweg and Milà i Canals, 2014). The amount of methodologies available for 

seemingly the same environmental issue, and the divergence of their results, creates confusion 

among decision-makers who are hindered in their ability to make informed decisions due to the 

lack of comparability between products of the same category. The lack of consensus on guidance 

and methods leads to a divergence on results and recommendations (EC-JRC, 2011). Even 

within the same characterization model, it is often impossible to compare similar products due to 

the range of flexibility allowed in each methodology and thereby the results may vary (Lehmann 

et al., 2015a; Manfredi et al., 2012; Zamagni et al., 2008). 

It is important to reach a consensus on how LCA can lend credibility to results and their 

communication, by producing accurate and comparable information and preventing the lack of 

transparency between real claims and marketing plots (“green washing”) of those who try to adjust 

the system to their own benefit, making claims that are inaccurate or insignificant (UNOPS, 2009). 

In the past two decades, policies and strategies have been made by governments to improve and 

to take into account sustainable development and the environmental performance of services and 

products. Not only for business to consumer communications, LCA is also used for private 

companies to gain competitive advantages, such as costs savings, product differentiation, 

increase efficiency of production and to improve organizational performance (Hoffman et al., 

2014; Hellweg and Milà i Canals, 2014).  

The European Union (EU) created the Product Environmental Footprint (PEF) and the 

Organization Environmental Footprint (OEF) in order to harmonize and establish a common 

methodology applicable worldwide. The PEF and OEF are LCA-based guidelines used to 
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evaluate the environmental performance of products and organisations, respectively. Together, 

they provide LCA practitioners with a tool that also helps on communicate the results to 

consumers and to business partners. They were created with the objective of improving how LCA 

declarations can be verified in the most efficient and effective way, to provide users a cheaper 

and easier tool to measure environmental performance and to produce and disseminate data for 

making environmental footprints available for free. They have as long term goals the possibility 

of comparing similar products based on their environmental performance throughout their value 

chain, to improve their access to green markets and to enable benchmarking for companies 

(Manfredi et al., 2012). PEF and OEF methods cover 14 impact categories, one of which is LU. 

PEF is now the reference method for LCA studies that applies to EU Eco-Labels within the EU  

(EC, 2013).  

There are many improvements still necessary on PEF and OEF. For instance, methods regarding 

water consumption, LU, and abiotic resource are not considered adequate neither satisfactory 

(Lehmann et al., 2015a; EC-JRC, 2011). The EC encourages the test of alternative methods for 

these aspects in order to have more accurate assessments. These methods have a great 

importance in order to provide a successful application of LCA in food and feed production. Also, 

due to the great importance on the improvement of knowledge in this matter, the second pilot of 

PEF and OEF focuses on several sub-sectors of food and feed production (Lehmann et al., 

2015b). 

1.3.2 Life Cycle Stages of Food and Feed 

Food and feed products life cycle chain may be divided in 5 major stages as described in the 

figure 2 (Sengstschmid et al., 2011): 

 Figure 2-  Life cycle stages of food and feed products. 

When assessing life cycle of food products, the agricultural stage usually has higher impacts than 

transportation and processing unless large transportation distances are involved and/or in the 

case of highly processed products (e.g. cheese) (Mogensen et al., 2009).  

Even though food packaging is perceived as a significant stage of the life cycle of food products, 

and indeed it should be addressed, it often does not have significant environmental impacts 

(Sengstschmid et al., 2011). Also conservation methods and consumption patterns do not have 

a significant weight when compared with the overall of the environmental impacts (Jungbluth et 

al., 2000) except in the case of highly processed foods.  

Agriculture is responsible for over 90% of eutrophication impacts and for 50% of GHG emissions 

of most food products (Sengstschmid et al., 2011). For products such as meat and dairy, the 

agricultural stage is responsible for significantly larger impacts the other stages of the food and 

feed value chain. Thereby, all other life cycle stages assessment are less significant 

Primary 
Production

Processing Transport Packaging Retail
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(Sengstschmid et al., 2011). This is due to the ratio of feed and meat production, i.e. 75-90% of 

the energy consumed by animals goes to body maintenance, manure and other products (e.g. 

skin and bones) whereas only the remaining energy is converted from feed to meat.  

Land is a finite resource and the importance of LU is justified by the role of the agricultural stage 

of agri-food products being the main life cycle environmental hotspot (UNEP, 2012; Hörtenhuber 

et al., 2014).  The higher need for feed/livestock brings pressure to LU that could be also used 

for food production (Röös et al., 2013). The availability of arable land per capita is declining 

(Bruinsma, 2009). While farmers need land for agriculture, they also need to maximize their profits 

and so they need to have the highest productivity possible. The quality of land is then a key factor 

for farm productivity. We can then conclude that LU impacts play a major role on assessing 

agriculture impacts. (Paloviita et al., 2015). 

1.4 Land use and land cover 

LU is defined as the way that a particular land is utilized, i.e. the arrangements, activities and 

inputs that humans undertake (e.g. forestry, agriculture, pasture, urban). A similar and often 

mistakenly considered as equal concept is land cover. Land cover refers to the biophysical 

characteristics of the earth’s land (e.g. forest, cropland, grassland, mine). Nevertheless, the two 

concepts are related. LU is a function of land cover, and land use changes (LUC) may also affect 

land cover (FAO/UNEP, 1999). Changes in management and tillage practices and manure inputs 

are not considered LU or cover changes (Food SCP RT, 2013). In practice, there is an ambiguity 

between these definitions and it is common to encounter different perceptions of LU and land 

cover. Due to this inconsistency, in this dissertation we are will use either term “land use” or “land 

cover” as meaning both land utilization and its respective biophysical characteristics (i.e. a 

combination of both designations). 

The Millennium Ecosystem Assessment (MEA, 2005) identified LU and LUC as one of the main 

direct drivers of biodiversity loss. LU influences biodiversity as well as the structure and functions 

of ecosystems (e.g. biomass production or water filtration) (Koellner et al., 2013b) and can cause 

damages to the areas of protection, i.e. areas that present value to human society (humans, biotic, 

abiotic and built environment) (Jolliet et al., 2004). LU changes also cause variations on carbon 

stocks, e.g., in a LU change from forest to agriculture, carbon stocks will vary due to microbial 

decomposition or aboveground biomass removal (IPCC, 2000). Soil carbon sequestration that is 

highly dependent of land management changes and LU changes is considered an important 

climate change mitigation option (Goglio et al., 2015). 

In the past 40 to 50 years, agricultural land has expanded to regions that were previously forested 

and urbanized. Infrastructure expanded to areas previously occupied by agriculture (Holmgren, 

2006). The higher demand for land for agricultural purposes or its allocation for the production of 

bio-fuels brings consequences such as deforestation and biodiversity loss (UNEP, 2012) While 

the use of mineral fertilizers and pesticides in conventional agriculture has deep effects on the 

environment, in comparison with organic agriculture, conventional agriculture needs less arable 
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land (Roy et al., 2009). Land occupation is thusly one of the main variables required to understand 

the consequences of agricultural systems and practices. 

LU and LUC are considered main contributors to GHG emissions and, as mentioned previously, 

there is an increasing pressure and competition on land due to the increase of the needs for food, 

feed and biofuels (Popp et al., 2014). When assessing LU impacts, soil represents an essential 

role by providing a range of ecosystem services (Antón et al., 2014).  

1.5 Land use influence on soil properties  

While assessing LU impacts, it is common to consider soil quality and respective properties 

(Garrigues et al., 2012). Soil physical and chemical properties such as texture, soil organic carbon 

(SOC), N content, clay fraction will influence soil quality. Soil quality is often defined as the 

capacity of soil to function, i.e. to provide soil ecological services but is also defined as the 

capacity to provide and sustain uses such as agriculture and habitation (Garrigues et al., 2012).  

Soil is an essential non-renewable resource and its degradation is a global problem. Soil provides 

functions of recycling and storage of nutrients and organic waste, water flow control, protective 

action of groundwater quality and habitat for soil fauna amongst others (Andrews et al., 2004). 

Soil also has a major importance on the mitigation of climate change through the sequestration 

of carbon in soils from the atmosphere and thereby influencing overall GHG emissions (Goglio et 

al., 2015). 

While agricultural activities have intensified, soil degradation, nutrient pollution, biodiversity loss 

and GHG emissions associated with LUC have also increased (UNEP, 2012). To assess soil 

quality on agricultural systems, specific land use and climate characteristics (e.g. temperature, 

precipitation) are necessary as well as management practices and goals (Andrews et al., 2004). 

An accurate characterization model assessing the role of LU must consider these factors. 

1.6. Soil organic carbon and the soil carbon cycle 

 

Figure 3- Carbon cycle simplified diagram. 

Soil is not only a finite resource but also a shrinking one. Soil-stabilized carbon is an essential 

element to improve soil quality (Manna et al., 2016). A quarter of Earth’s land suffered degradation 

due to soil carbon loss (Milne et al., 2014). Soil contains approximately 2 344 Gt of organic carbon 

globally (Stockmann et al., 2013), and are the largest global carbon terrestrial reservoir on Earth, 



9 

 

second only to the oceans as the largest overall carbon pool (Ogle and Paustian, 2005). For this 

reasons, soil carbon sequestration has a major role to play within the carbon cycle, particularly in 

its uptake and release to the atmosphere. SOC is the carbon content of soil organic matter (SOM) 

(about 50 to 60% of SOM) (Kutsh et al., 2009). SOC has different benefits such as helping to 

create greater soil permeability, aeration, drainage and protection against erosion, providing 

substrate and energy to support microbial activity and providing a reservoir of organic N, P and 

other nutrients (Kutsh et al., 2009).  

 

Figure 4- Soil carbon cycle simplified diagram, adapted from Kutsch et al. (2009). 

Decomposition and mineralization processes of SOM play an important role on the losses of 

carbon from soil. Soil microorganisms, bacteria and fungus are responsible for carbon decay and 

therefore activity of soil organisms is crucial for soil dynamics. SOC is dependent on the microbial 

population of soil and on the properties of plants and vegetation and on the nutrients soil 

composition. Leaching processes are also important for the soil carbon balance, due to the loss 

of carbon via dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) (Chapin et 

al., 2006). Figure 3 and Figure 4 shows the mainly trades and processes of carbon between the 

atmosphere and soil. 

SOC may be divided into different pools, based on SOC properties (composition, physico-

chemical properties, rate of decomposition). Three pools are frequently considered based on 

decomposition rate: labile pool, slow pool and inert pool. The labile pool is composed by fresh 

plants residues, animal residues and micro-organisms. Mostly humus and resistant plant 

materials compose the slow pool. The inert pool is composed by the resistant components i.e. 

products at their last stage of decomposition, e.g. charcoal (Chan, 2008).  

LU management has a large impact on SOC stocks and can cause CO2 emissions or 

sequestration (Milne et al., 2014). Guo et al. (2002) estimated variations of soil carbon according 

to specific LU changes where the highest variations were from native forest to crop (loss of 42% 

soil carbon), from pasture to crop (loss of 59% soil carbon) and from crop to secondary forest (an 

increase of 53% of soil carbon). SOC is considered a proxy for soil quality due to its influence in 

many soil parameters and dynamics making it an important indicator for LCA of LU (Ogle et al., 

2012). This indicator can be extended to other endpoint categories according to the impact 
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pathways linked to LU proposed by Koellner et al. (2013a). Due to the goals of this dissertation 

on the study of different LU, management practices, and human occupation that can result in 

variations of soil quality and carbon stocks and due to magnitude of influence of SOC on soils, 

we chose it as a midpoint indicator for the assessment of LU impacts. 

1.7 Land use and soil carbon in LCA 

In the past years, there has been an effort to study LU impacts and soil dynamics and integrate 

them in LCA making credible frameworks for LU aspects, but most fail to provide a global 

consensus (Vidal-Legaz et al., 2016). The frameworks for accounting LU impacts on LCA are still 

attached to too many uncertainties due to the simplifications and assumptions made (Hörtenhuber 

et al., 2014).  

1.7.1 Proxy Based Method – Land use model 

Under the UNEP-SETAC Life Cycle Initiative, Milà i Canals et al. (2007) proposed a framework 

to account for LU interventions (occupation and transformation) and made an attempt to select 

environmental midpoint indicators and damage categories. It is the framework that carries more 

consensus of experts and is also the framework recommended by the Joint Research Centre of 

the EC (EC-JRC, 2011). Although it is the framework recommended, it is considered a framework 

with a limited scope and was only recommended to be used carefully. Further work within UNEP-

SETAC, was developed by Koellner et al. (2013a) that provided an improved approach and 

addressed some limitations of the framework proposed by Milà i Canals et al. (2007), giving a 

larger importance to the bio-geographical differentiation of land-use impacts and proposing a 

cause-effect chain pathway linking LU with impact categories.  

This framework considers two LU interventions (i.e. two types of LU flows): land transformation 

and land occupation. Land transformation is a process of changing land characteristics (cover 

and/or use) for a new intended LU and land occupation refers to a specific use of land maintaining 

its characteristics constant along the time (Milà i Canals et al., 2007). Transformation is measured 

in surface units (ha of land into new land) and occupation is measured in surface-time units (e.g. 

ha yr). For occupation, time and area are interchangeable (e.g. occupying 1 ha of land for 2 years 

is the same as occupying 2 ha for 1 year). These interventions will have an impact on land quality 

that can be measured using different indicators. After a land transformation, if there is no 

occupation process, the ecosystem will change gradually to its initial quality, even though the 

original ecosystem quality might not be reached (Koellner et al., 2013a). The LU impact is then 

the sum of land transformation impacts, land occupation impact and permanent impacts. 

Brandão and Milà i Canals (2013) proposed a methodology for the calculation of transformation 

and occupation characterization factors, depicted in Figure 4, in order to reflect the impacts of 

these transformations in different LUs. The CFs calculated according to this model express SOC 

depletion. SOC loss is depicted by a positive CF and SOC gain is translated by a negative CF. 

This means that the indicator calculated by the indicator is “SOC depletion” (Brandão and Milà i 

Canals, 2013). 
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Figure 5- Depiction of the calculation of transformation and occupation characterization factors, 
based on Brandão and Milà i Canals (2013) - image adapted from Morais (2015). 

CF – characterization factor; 𝑆𝑂𝐶𝐿𝑈1 - SOC content before transformation; 𝑆𝑂𝐶𝐿𝑈2 - SOC content 
in subsequent land use; R - regeneration rate; 𝑇𝑅- regeneration time;  𝑆𝑂𝐶𝑝𝑜𝑡 – potential SOC 

content in potential natural vegetation; 𝑆𝑂𝐶𝐿𝑈2 – SOC value after transformation or occupation; 
𝑡𝑖𝑛𝑖 – instant when transformation and occupation occur; 𝑡𝑟𝑒𝑔𝑒𝑛1 – instant when SOC reverted to 

the previous land use; 𝑡𝑟𝑒𝑔𝑒𝑛2- instant when SOC reverted to potential land use; 𝑡𝑓𝑖𝑛 – instant 

when occupation ends    

The equation used to calculate transformation CFs (CFtransf) is described by equation (1) 

𝐶𝐹𝑡𝑟𝑎𝑛𝑠𝑓 [𝑘𝑔𝐶. 𝑦𝑒𝑎𝑟. 𝑚−2]

= (𝑆𝑂𝐶𝑝𝑜𝑡 − 𝑆𝑂𝐶𝐿𝑈1) × (𝑡𝑟𝑒𝑔𝑒𝑛1 − 𝑡𝑖𝑛𝑖) +
1

2
(𝑆𝑂𝐶𝐿𝑈1 − 𝑆𝑂𝐶𝐿𝑈2) × (𝑡𝑟𝑒𝑔𝑒𝑛1 − 𝑡𝑖𝑛𝑖) 

(1) 

where 𝑆𝑂𝐶𝑝𝑜𝑡 is the potential value of SOC that a land can have if undisturbed, 𝑆𝑂𝐶𝐿𝑈1 is the SOC 

value of a land before a transformation/occupation, 𝑆𝑂𝐶𝐿𝑈2 is the SOC value of a land after 

transformation/occupation, 𝑡𝑖𝑛𝑖 is the instant when transformation (which is assumed to have 

instant effects) and occupation happen, 𝑡𝑟𝑒𝑔𝑒𝑛1 is the instant where SOC reaches the value prior 

to transformation.  

The occupation CF (CFoccup) is given by  

 𝐶𝐹𝑜𝑐𝑐𝑢𝑝[𝑘𝑔𝐶. 𝑦𝑒𝑎𝑟. 𝑚−2𝑦𝑒𝑎𝑟−1] = 𝑆𝑂𝐶𝑝𝑜𝑡 − 𝑆𝑂𝐶𝐿𝑈2 (2) 

where 𝑡𝑓𝑖𝑛 is the instant when occupation intervention ends. 

This framework raises many issues such as assuming that land transformation is instantaneous 

and land occupation is constant over time. Additionally, LU changes are calculated in relation to 

a baseline – reference situation. Different reference situations have been studied: the historic 

natural land state was used by Bentrup et al. (2002), Potential Natural Vegetation (PNV) by Saad 

et al. (2011), Koellner et al. (2013a), Alvarenga et al. (2015) and Morais (2015). Addressing the 

reference situation using a static PNV is a common approach but is also a problem because this 

approach does not reflect the ecosystems dynamics and natural evolution (Soimakallio et al., 

2015).  

Temporality aspects are another challenge on the evaluation of land changes. As reported by 

Othoniel et al. (2016), scenario-based modelling should be used to address this issue. Assuming 
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a constant provision of LU over time is not accurate. For agriculture for example, due to the 

seasons of cultivation for each type of food, it is important to consider time aspects regarding 

cultivation, management practices and climate conditions that are not addressed in the current 

frameworks. Also, assuming a specific relaxation time, that is determined by expert knowledge, 

and that depends on the former type of occupation, the type of expected natural land cover and 

the biogeographical conditions (Milà i Canals et al., 2007) introduces high uncertainty. Wiedema 

and Liendeijer (2001) have already proposed a list of estimates of relaxation times for LU, but 

without considering regionalization. Constant relaxation times for each type of land cover or biome 

misses the dynamics of the ecosystems that are influenced by site-specific conditions, such as 

climate and soil properties - for example, a grassland in Portugal will have different impacts and 

relaxation times that the same grassland in Paraguay or Denmark.  

Othoniel et al. (2016) highlights that the systems crawl back to a natural state under the influence 

of different pressures when the occupation states are abandoned. If we consider constant quality 

when calculating land occupation impacts, we are neglecting impacts such as climate change 

(independent from the system) or even the loss of a supporting function that was provided by the 

system and that was lost during the evaluation of the life cycle.  

Transformation of land cover has another problem due to the double-counting of impacts. This 

happens due to the division of inventory flows into transformation “from” and transformation “to”. 

As discussed by Brander (2015), using natural regeneration as baseline (as suggested by Milà i 

Canals et al., 2007), if the land is maintained in agricultural use, the impact of foregone 

sequestration of carbon for example, is going to be present for each successive product-system 

utilising the land. So every time a new product-system is accounted, the foregone sequestration 

will be allocated. Unless this impact is distributed across all future production from the land, this 

problem will occur. 

A final and important issue with this approach is that it is typically operationalized using data-

intensive calculations. SOC maps are used to assign steady-state SOC levels to each land 

use/cover class in each region (e.g. climate or eco-regions). As a consequence, most LU LCIA 

models provide CFs for a very small number of land classes. For example, Morais et al. (2016b) 

provide CFs for LU in Europe using the LUCAS Topsoil database (Brogniez et al., 2015), which 

has approximately 20 000 observations. Nevertheless, they determined that if more than four land 

classes were used, the distinction between CFs for each class would not be statistically 

significant. In data-driven, proxy-based models the number of land classes seems to be limited. 

The most likely way of overcoming this limitation is by decreasing the need or direct observational 

data, using process-based models as a replacement.  

1.7.2 Process-Based Modelling  

Process-based models are used to assess a system, integrating many complex biogeochemical 

processes formulated on mathematical-ecological theory and taking into consideration climatic 

variations, agricultural management practices and soil conditions (Cuddington et al., 2013). They 

address different temporal and spatial scales. 
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In the “current modelling procedure”, such the one used by Brandão and Milà i Canals (2013), 

static natural reference situations are used for comparison. Transformation impacts are 

instantaneous and there is no variation on the degree of land occupation (Othoniel et al., 2016). 

The procedure is described on the left side of Figure 5, based on Othoniel et al. (2016). 

The illustration on the right side of Figure 5 describes a “process-based method”, where there is 

no reference situation but an assessment based on real scenarios that characterize intra and 

inter-annual dynamics. These scenarios integrate site-dependent climatic and soil characteristics 

with seasons of cultivation and management practices for each type of product. This method 

requires more data than the proxy-based model (such as Milà i Canals et al., 2007; Koellner et 

al., 2013a) but carries higher level of detail and lower uncertainty allowing a more precise 

assessment (Othoniel et al., 2016). Also, process-based models are much more detailed when 

compared with proxy-based models (Filimonau et al., 2016). Models such as the ones described 

in the next section are very useful due to their capacity to simulate SOC turnover, according to 

specific site conditions and relate it to specific management practices (Monforti et al., 2015). 

 

Figure 6- Illustration of the difference between proxy-based methods and process-based methods 
(adapted from Othoniel et al., 2016). 

CF – characterization factor; LUC – land use change; SOC – soil organic carbon 

1.7.3 Selection of impact pathway and indicator 

The latest and more complete impact pathway for land-use impacts published is the one from 

Vidal-Legaz et al. (2016), depicted in Figure 6. It correlates soil properties and interventions with 

midpoint and endpoint indicators and categories, and also with areas of protection. 

As explained previously, SOM is assumed to be the best single midpoint indicator to assess LU 

impacts by the ILCD Handbook (EC-JRC, 2011) and by the ENVIFOOD Protocol (Food SCP-RT 

2013). Also, Brandão and Milà i Canals (2013) considered SOC as a stand-alone soil quality 

indicator. It is associated to the endpoint category of ecosystem services that was also proposed 

by Koellner et al. (2013a) as an endpoint category. SOC was thusly chosen as a midpoint indicator 

this dissertation. We measure the impact on land quality depending on the variation of SOC on 

soils across the simulations as a deficit of carbon where the FU is SOC depletion in tC/ha. 
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Figure 7- Impact pathway for land use, as presented by Vidal-Legaz et al. (2016).The arrows in 
black represent links to midpoint indicators while the green arrows represent links to endpoint 
indicators. 

AoP – Areas of protection; NPP – net primary production; HANPP – human appropriation of NPP 
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2. Objectives of this dissertation 

The main objective of this dissertation is to take a step forward from the frameworks that are 

currently being used, known as proxy-based modelling methods (Milà i Canals et al., 2007; 

Koellner et al., 2013a; Brandão and Milà i Canals, 2013) for the LCIA of LU. The goal is to test 

the potential LCIA applications of two process-based models, namely RothC and DNDC, which 

may enable an assessment based on scenarios to calculate more accurate CFs for soil quality. 

We apply this modelling process to obtain CFs for the LCIA midpoint LU category using SOC as 

an indicator, and obtaining regionalized CFs using a spatially explicit process-based model to 

simulate soil dynamics. A description of the main LCIA aspects covered by this dissertation is 

represented in Figure 8. One of the main limitations of typical LCIA models is the lack of 

regionalization, i.e. considering that the same type of LU may cause the same impacts at different 

locations of the globe (Jolliet et al., 2004). In this work, we calculate biogeographically 

differentiated CFs, as recommended by Koellner et al. (2013a).  

The role of RothC and DNDC in this dissertation is to simulate the dynamics of SOC in soils using 

the region of Alentejo, Portugal, as a proof of concept. This application study aimed to determining 

the potential for global application of a similar procedure, identifying the main limitations of the 

approach and suggesting ways to move forward in that direction.  

CFs are typically obtained using simpler mathematical procedures. The goals of this thesis are 

therefore exploratory. There is no prior experience with using scenario-based models that 

resulted in CF calculations (Vidal-Legaz et al., 2016). The approach in this thesis is a paradigm 

shift, where CFs are calculated based on scenarios. These scenarios will take into consideration 

expected future changes in temperature and precipitation under climate change. While proxy-

based models are statistical and data-intensive, which limits the number of land classes 

evaluated, in our approach there is no such limitation, because each crop is analysed individually 

and are already calibrated in the case of DNDC model and can be calibrated indirectly using 

RothC.  

We incorporate the site-dependency of the environmental impacts, accounting not only with the 

parameters of soil (for example pH, texture and bulk density for DNDC model) but also with the 

climatic parameters that have a major influence on all the dynamics of the soil. Instead of just 

modelling within a LU typology, we follow the example of Lugato et al. (2013) addressing the 

spatial location and its components by identifying unique homogenous territorial units overlaying 

climate data, with soil data and LU data.  

 



16 

 

 

Figure 8- Main LCA Aspects covered in this dissertation (adapted from ISO 14042:2006). 

CF – characterization factor; SOC – soil organic carbon; LCI – life cycle inventory 

The specific objectives of this dissertation are: 

 To identify and select the most promising process-based models in order to estimate 

SOC depletion in LCIA; 

 To model SOC dynamics as response to LU using the DNDC model and estimate SOC 

depletion; 

 To model SOC dynamics using the RothC model and estimate SOC depletion; 

 To determine the sensitivity of the RothC model to input parameters; 

 To determine simple regression models that fit the results of RothC in order to simplify 

the calculation of CFs; 

 To calculate CFs for the region of Alentejo and compare them to CFs obtained using 

proxy-based models. 

This dissertation is divided in 5 main sections. Section 3 analyses different process-based models 

(their benefits and limitations) and selects the ones more appropriate to our objectives. Section 4 

presents all datasets necessary to run the models. Sections 5 and 6 present the implementation 

of each model chosen. Section 7 analyses the sensibility of the models to their input parameters. 

This is followed by a complexity-reduction analysis in section 8 where results are approximated 

by simple equations. In the last section 9 CFs are calculated and compared with alternatives 

obtained from the literature. Since the results obtained for the CFs are in large tables, they are 

presented as supplementary material (duly cited in the text where relevant). This supplementary 

material is available at: https://fenix.tecnico.ulisboa.pt/homepage/ist172997/supplementary-

materials.  
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3. Selection of models 

3.1 Models available for the estimation of SOC dynamics 

There are many different process-based models available for end-users. In order to choose which 

models to evaluate, we made a research and three main literature references (Ponce-Hernandez 

et al., 2004, Smith et al., 1997, Byrne et al., 2005) that evaluated different models. Byrne et al. 

(2005) evaluated DNDC (Denitrification Decomposition model), PaSim (Pasture simulation 

model), RothC and Century; Ponce-Hernandez et al. (2004) assessed Century and RothC; and 

Smith et al. (1997) evaluated RothC, Candy (Carbon and Nitrogen Dynamics), DNDC, Century, 

Daisy, NCSoil, SOMN, ITE and Verbene. After this analysis, we choose CENTURY, RothC, 

DNDC, Candy and PaSim that had a better overall evaluation on the articles, to research deeper. 

 

RothC is a model of carbon turnover in non-waterlogged soils. It was developed to model the 

carbon turnover in arable soils, grassland and forest. It as in count the effects of temperature, 

moisture content and soil type. Nitrogen and carbon dynamics are not attached (Smith et al., 

1997). The model uses a monthly step and is divided in five compartment systems: inert organic 

matter (IOM), easily decomposable plant material (DPM), resistant plant material (RPM), 

microbial biomass (BIO) and humified organic matter (HUM).  IOM pool is resistant to 

decomposition and does not receive carbon inputs (Kutsch et al., 2009). 

Each compartment, except IOM, decomposes according to a first-order process with specific 

parameters and a specific decomposition rate constant. 

When an active compartment contains an amount of carbon (Y tC/ha), this amount will 

decompose in a particular month, where 𝑌 (1 −  𝑒−𝑎𝑏𝑐𝑘𝑡)  (𝑡𝐶/ℎ𝑎) is the loss of carbon in a 

monthly step, and where the parameters are defined as: 

 a – rate modifying factor for temperature 

 b – rate modifying factor for moisture 

 c – soil cover rate modifying factor 

 k – is the decomposition rate constant for the specific compartment 

 t – is 1/12 due to k being an yearly decomposition rate 

 

DNDC models the dynamics of carbon and nitrogen biogeochemistry in agricultural ecosystems 

and that operates at a daily step. It is composed by 6 sub-models: soil climate, crop growth, 

decomposition, nitrification, denitrification and fermentation. The first three sub-models are used 

to predict soil temperature, moisture, pH, redox potential and substrate concentration. With the 

outputs of the first three sub-models, the model runs the last three sub-models to predict carbon 

dioxide, methane, ammonia, nitric oxide, nitrous oxide and dinitrogen emissions. Crop residues 

(namely litter) are considered an essential input for SOM. There are three different soil litter pools 

in which the crop residues go depending on their C/N ratio: very labile litter pool, labile litter pool 

and resistant litter pool. SOM is divided in 4 different pools: plant residue, microbial biomass, 
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active humus and passive humus. Soil decomposition rate is influenced by pool size, specific 

decomposition rate, soil clay content, N availability, soil temperature and soil moisture 

parameters. When SOC residing in a pool decomposes, a portion is lost as 𝐶𝑂2 while the rest is 

integrated into other SOC pools. Does not considers layers on the vertical horizon of soil. Water 

availability depends on parameter of precipitation, snowfall, drainage and actual pan evaporation. 

Nitrification and denitrification are influenced by the dynamics of soil Eh and substrates of DOC, 

𝑁𝐻4
+, 𝑁𝑂3

−, 𝑁𝑂, 𝑁2𝑂. DNDC can be run in two different modes: site or regional.  

 

CENTURY 5 Agroecosystem is a model that is used to simulate carbon and nutrients (Nitrogen 

(N), Phosphorous (P) and Sulphur(S)) dynamics for different types of ecosystems (grassland, 

agricultural crop, forest and savanna). The model runs using a monthly time step and can simulate 

the dynamics of SOM for one year, centuries or even for thousands of years. The model is divided 

in 6 sub-models: SOM, nitrogen, phosphorus, sulphur, plant production and water budget, 

leaching and soil temperature sub-model.  

The SOM sub-model includes three SOM pools (active, slow and passive). The active pool 

represents soil microbes and microbial products, the slow pool includes resistant plant material 

derived from the structural pool and soil-stabilized microbial products and the passive pool 

includes physically and chemically stabilized products. For plant residues and organic animal 

excreta there is a structural pool and a metabolic pool, where both are function of the lignin to N 

ratio in the residue. Each one of this pools have different turnover rates. SOM dynamics are only 

simulated in the first 20 cm of soil. The model also considers leaching of organic matter, aerobic 

and anaerobic conditions, soil texture and content. The flows of N, P, and S are calculated by 

multiplying the carbon flow rates by C:N, C:P, and C:S ratios of the state variables (Parton et al., 

1988). For the organic matter decomposition, the model assumes factors of soil moisture, soil 

temperatures, clay content and N content. Management options such fertilizer addition, different 

types of harvest, effects of fire and grazing, senescence for crops, addition of organic matter, 

irrigation and erosion are available in the event commands of the model. 

 

PaSim is a model based on the Hurley Pasture Model (Thornley, 1997) that simulates water, 

carbon and nitrogen cycles. The time step used is 1/50 of a day and several years may be 

simulate. Soil horizon is assumed homogeneous. It is divided in sub-models for plants, animals, 

microclimate, soil biology, soil physics and management. Photosynthetic carbon is divided into 

two departments (root and shoot) and can be lost due to ecosystem respiration, animal milking 

and enteric CH4 emissions. Aboveground biomass has three destinations: cutting, grazin or litter 

pool. N deposition, N fertilizer and symbiotic N2 fixation are the inputs considered by N cycle. At 

the animal module, it is possible to simulate classes of suckler cows, dairy cows and heifers, 

where temperature will affect forage digestibility and ingestibility. Agricultural management has 

options of tillage, irrigation and N fertilization. In recent improvements, this models enables the 

simulation of diet of animals and associated methane emissions. It enables the determination of 
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optimal forage yield to feed animals at barn. The soil biology sub-model is derived from the 

CENTURY model (Lardy et al., 2012).  

 

CANDY model simulates carbon and nitrogen dynamics in mineral soils, up to a depth of 2m. Its 

purpose is to model carbon stocks, organic matter turnover, nitrogen, leaching and water quality. 

It is divided in different modules: soil and temperature dynamics, soil water dynamics, soil 

structure dynamics, pedotransfer functions, biologic active time, SOM turnover, N dynamics and 

crop. Each simulation starts with a set of parameters of soil, agricultural management and 

weather. Soil and temperature dynamics module is responsible for the simulation of the variation 

of soil temperature, that will influence chemical and biological processes. Soil water dynamics 

module will simulate the amount of water available that will the influence plant growth, soil 

temperature, chemical transport and ground water recharge. Water percolation and interception, 

snow accumulation and melting, evaporation are all modelled. Soil dynamics module is 

responsible for the simulation of SOC content, where bulk density, soil loosening, re-compaction, 

cryoturbation and bioturbation are all modelled. Pedotransfer functions module is responsible for 

the estimation of properties of soil texture, bulk and particle density, pore volume, water 

parameters and retention. Biologic active time and SOM turnover modules will allow the 

simulation of SOM turnover due to biologic activities. N dynamics module allows the simulation of 

mineral nitrogen (nitrate or ammonium), where the organic pools are dependent on the carbon 

amount and C/N ratio. Crop module will enable the simulation of plant growth and crop 

development. CANDY also has a weather generator and an auto fertilizer scheme (Franko et al., 

2015). 

 

All of these models have been used in previous scientific works. Century, Daycent (daily-step 

version of CENTURY) and DNDC were used by Smith et al. (2012), to investigate SOC stock 

changes due to crop residues removal, concluding that the predictions resulting from the use of 

this models were within the range of uncertainty as estimates derived from field experiments.  

Lugato et al. (2010) successfully estimate C and N cycles at Beano site (Italy) with DNDC for 

different site specific parameters and management practices. Leip et al. (2008) used DNDC to 

estimate GHG fluxes and carbon stock changes for agricultural soils in Europe, for different 

management practices, linking it with CAPRI (Common Agricultural Policy Regional Impact 

Assessment) economic model for agriculture. Wattenbach et al. (2010) modelled winter wheat 

and maize on European croplands with 4 different models, recognizing DNDC being the one with 

more options of crops and management practices even though it lacks accuracy on simulating 

carbon fluxes. Smith et al. (1997) compared nine different models against twelve datasets with 

different LUs and management practices. The results showed that both RothC and DNDC had a 

low root mean square error.  Francaviglia et al. (2012) used RothC successfully to estimate SOC 

stocks in Mediterranean systems for different management processes. Also for Mediterranean 

systems, Nieto et al. (2010) used RothC to predict SOC changes in the LU change from native 
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vegetation to olive groves. Álvaro-Fuentes et al. (2012) simulate the dynamics of Spanish soils 

with CENTURY and RothC, for different tillage practices and different fertilization applications. 

3.2 Selecting the model 

The criteria for selecting the model in use were adapted from Ponce-Hernandez et al. (2004): 

a) The required inputs needed to match with available data in databases; 

b) The model should integrate site-specific parameters of soil, climate and land 

management; 

c) The model should generate output variables needed and appropriated for the study. 

d) The model should be able to simulate not only agricultural crops but also forest. 

e) The model should be computationally doable, i.e. the simulations should require fewer 

time and the computer required should not be a supercomputer. 

The objective of the application in this thesis is LCIA modelling. There are limitations and 

particular features required by LCA, namely the types of inventory flows commonly available to 

use as source data and the need for simplicity and global coverage. Inventories typically provide 

only area occupied and/or transformed by major land classes (e.g. agriculture, forest) with no 

additional qualification. Additionally, the fact that LCA focuses on products that very often are the 

result of global production chains means that models must be run effectively to obtain 

approximated results for the entire planet rather than site-specific, detailed results. This means 

that we added two additional criteria: 

f) The model should require only information available in LCIs; 

g) The model should be applicable, in simplified/approximated form, to entire regions and 

not particular case studies. 

Table 1 - Summary of the characteristics of the different models (RothC, DNDC, Century, PaSim and 
Candy). 

 RothC DNDC Century 5 PaSim Candy 

Inputs availability Available. 

Yes, although 
difficult to find 
regionalized 

data. 

Yes, although 
difficult to find 
regionalized 

data. 

No, difficult 
to find 

available 
data. 

No, difficult 
to find 

available 
data. 

Soil, climate and land 
management 
parameters 

Yes. Yes. Yes. Yes Yes. 

Appropriated outputs. 
Simulates 

SOC 
dynamics. 

Simulates 
SOC 

dynamics. 

Simulates 
SOC 

dynamics. 

Simulates 
SOC 

dynamics. 

Simulates 
SOM 

dynamics. 

Simulation crops 
(agricultural and forest) 

Yes. Yes. Yes. Yes. Yes. 

Computational 
efficiency (simulation 

running time) 

Efficient 
with the 
modified 
version in 
Matlab. 

Not efficient. Not efficient. 
Not 

efficient. 
Not 

efficient. 

Allows simulations for 
multiple regions 

No, only 
with a 

modified 
version. 

Yes Yes Yes Yes 

Support and guidance Yes. Yes. 
Incomplete 

guide to use 
the model. 

Yes. Yes. 
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According with these criteria and our research, RothC and DNDC were the models recognized to 

perform better. They were chosen due to the few requirements of inputs and easiness of 

application against models such CENTURY that are an ecosystem model and more complex and 

difficult to execute. Also the successful applications in similar studies and their ability to perform 

simulations for different locations (each location with different characteristics) simultaneously 

were an important factor.  Another critical factor for not choosing CENTURY, despite its 

successful application in other studies, was the lack of support and guidance to use it. Guidelines 

for the model are available on the website, but instructions, for example on how to construct the 

input files, are unavailable yet. Even though RothC has not been parameterized for forests, this 

model has been successfully used to simulate these systems (Palosuo et al., 2012). 

In our analysis we recognized then that these models had different degrees of complexity and 

number of inputs required. We choose RothC and DNDC also to establish a frontier, represented 

at Figure 9, of what is viable or not in LCA. Models such as CENTURY or PaSim are too complex 

for LCIA at the moment, so the question is whether a manageably complex model such as DNDC 

would perform better than a less complex model such as RothC, or if for LCA purposes RothC is 

the right balance between complexity and information required for the simulations. 

 

Figure 9- Illustrative graph of number of inputs required and model complexity of the models in 
study: statistical method (proxy-based method), RothC, DNDC, Candy, PaSim and Century. The 
dotted line shows a tentative frontier of complexity for application to LCA. 
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4. Datasets  

4.1 Study Region – Alentejo 

The region in study is the NUTS II region of Alentejo located at the center-south of Portugal. It 

comprises the districts of Portalegre, Évora, Beja, half of the south part of Setúbal and part of 

Santarém. It has approximately 760 thousand inhabitants (2011 Census) and an area of 

approximately 31 600 𝑘𝑚2. 

 

Figure 10- Portugal map with Alentejo’s region depicted in yellow. 

Alentejo has a Mediterranean climate, with a dry and hot summer and precipitation scarcity, and 

a cold winter, with some excess precipitation. It is the region in Portugal with the lowest ratio 

between precipitation and potential evaporation (0.7 ratio) (CEDRU, 1996). The Alentejo 

landscape is characterized by “montado” that may be defined as areas covered by multifunctional 

holm and cork forests where crop and livestock production may be present (Pimenta et al., 2014). 

Alentejo’s utilized agricultural area (UAA) represents 53% of the total UAA in Portugal even 

though the largest number of agricultural farms is in the North and Center regions of Portugal 

(INE, 2013).  

 

 

 

 



23 

 

Table 2- Identification of the major agricultural crops in the Alentejo region and total production 
(ton) and farm area (ha) in Portugal and Alentejo. 

Crops 
(2015) 

 

Production 
Portugal 

(ton) 

Total Area 
per crop 
Portugal 

(ha) 

Production 
Alentejo 

(ton) 

Total Area per 
crop Alentejo 

(ha) 

Weight of Alentejo 
Crops in Portugal 

(%) 

Grapes 934,633 178,957 242,265 32,764 18 

Maize 
(grain) 

808,995 88,547 435,305 32,234 36 

Forage 
Maize 

3 152,230 80,781 234,008 4,287 5 

Tomato 1 832,467 19,360 1 511,871 15,931 82 

Potato 444,166 20,267 69,199 2,450 12 

Rice 184,918 29,142 118,599 17,667 61 

Barley 44,402 21,170 41,477 19,477 92 

Wheat 80,393 39,736 67,841 30,807 78 

Oats 48,402 40,415 53,515 32,169 80 

Forage 
Oat 

1 976,056 130,559 1 364,619 81,991 63 

Olive 722,893 351,340 51,810 179,387 51 

According to the data provided by Instituto Nacional de Estatística (INE) (available at 

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados), barley is the most 

produced crop in Alentejo (92% of all Portuguese production), as well as tomato (82%), oats 

(80%) and wheat (78%), as shown in Table 2. Table 3 compares the area of forest in Portugal 

and Alentejo. These values confirm the importance and weight of Alentejo’s agriculture and forest 

in Portugal and were also obtained at INE portal. 

Table 3- Identification of forest area in Portugal and Alentejo and respective weight percentage 
of Alentejo forest area comparing with total Portuguese forest area. 

 
Portugal Continental 

(kha) 
Alentejo (kha) 

Proportion of Portuguese 
forest in Alentejo (%) 

Stone Pine 170 114 67 

Pine 621 48 7 

Cork 717 622 86 

Eucalyptus 749 194 26 

Oaks 64 4 6 

Holmoak 325 299 91 

Land degradation is recognized as one of the major issue in Mediterranean soils. Misuse of water 

resources and pollution, climatic variations and human exploitation and impact are one of the 

main causes for this degradation in this area (Geeson et al., 2002). Mediterranean countries are 

characterized by having the lowest SOC values in Europe (Brogniez et al., 2015). In the specific 

case of Alentejo, according to the LUCAS Topsoil Database (Brogniez et al., 2015) the values of 

SOC in the first 20 cm soil layer vary from 23 tC/ha to 224 tC/ha.  

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados
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4.2 Crop Parameters – GPP 

Information about management practices of each crop system simulated with data taken from 

GPP (2001). These data are described at Table 4 and involves practices of irrigation, flooding, 

tillage, pruning and planting and harvest dates. GPP (2001) crop fact sheets are the most 

complete data sets available, including more details about each crop system for the region of 

Alentejo. However, due to their key importance, application of manure and fertilizers were updated 

using Morais et al. (2016a). 
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Table 4 - Crop parameters - adapted from GPP (2001). 

Crop 
Irrigation 
System 

Planting 
Date 

Harvest Date Tillage Date Pruning Irrigation Date Flooding Date 
Irrigation (𝒎𝒎/

𝒎𝟐 year) 

Oats Rainfed October July October     

Olive Rainfed  December March March    

Olive Irrigated  January March March  July to September 18 

Grape Rainfed  September February & June November    

Orange Irrigated  May  June May to September  35 

Peach Irrigated  July April January May to August  40 

Maize Irrigated May October    July 24 

Forage Maize Irrigated May November    July 24 

Tomato Irrigated April September March  June to September  48 

Potato Irrigated May September   June to September  30 

Rice Irrigated April September March & April    150 

Barley Rainfed October July April & October     

Wheat Rainfed November July April     
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4.3 Input Data Comparison – RothC and DNDC 

Table 5 presents a comparison and summary of RothC and DNDC inputs required for the 

simulations. The inputs needed for these models are divided in different categories: soil, 

fertilization and manure, management, crop, climate and others. As we can see, DNDC models 

needs a total of 41 different inputs, against RothC that only needs 12 different inputs.   

Table 5- Input comparison between DNDC and RothC. 

DNDC  RothC  

Soil Parameters Units Soil Parameters Units 

N concentration in precipitation ppm -  

Maximum and minimum SOC content kgC/kg SOC initial content tC/ha 

Maximum and minimum soil clay fraction % Clay content of the soil % 

Maximum and minimum soil pH    

Maximum and minimum soil bulk density g/cm3   

Slope    

Soil Salinity index 0 - 100   

Fertilization  Fertilization  

Fertilizer Application Rate kgN/ha   

Flooding  Flooding  

Start and end date    

Flooding method for each event    

Irrigation  Irrigation  

Irrigated percent for each upland crop   - 

Manure  Manure  

Manure Application rate kgN/ha 
Monthly input of farmyard 

manure 
tC/ha 

Management  Management  

Planting and Harvest Dates    

Percent of Above-Ground crop residue  Monthly input of plant residues tC/ha 

Tilling date and method    

Crop Parameters  Crop Parameters  

Maximum yield kgC/ha   

Accumulative temperature ºC   

Water requirement 
kg 

water/kg 
dry 

matter 

  

Climate  Climate  

Daily Maximum and minimum air 
temperature 

ºC 
Average monthly mean air 

temperature 
ºC 

Daily Precipitation cm Monthly rainfall mm 

  Monthly open pan evaporation  
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DNDC  RothC  

Other Soil Texture Parameters  
Other Soil Texture 

Parameters 
 

Porosity    

Soil saturation conductivity m/hr   

Field Capacity    

Wilting Point    

Other Crop Parameters  Other Crop Parameters  

  Depth of soil layer sampled cm 

  Soil cover (0 or 1)  

Maximum total crop biomass at maturity kgC/ha   

Grain fraction of total biomass    

Leaves+stems fraction of total biomass    

Root fraction of total biomass    

C/N ratio for total plant    

C/N ratio for grain    

C/N ratio for roots    

C/N ratio for leaves+stems    

Water requirement    

Maximum leaf area index    

Maximum plant height m/hr   

Accumulative air temperature    

N fixation index    

Optimum Temperature ºC   

4.4 Common Input Data for DNDC and RothC models 

4.4.1 Soil Data - LUCAS Database 

Soil datasets were obtained from the LUCAS Topsoil (20 cm) Database (Toth et al., 2013). A 

topsoil survey was conducted at the intersections of 2 x 2 𝑘𝑚2grid, except areas above 1000 m 

altitude, covering the EU (except Romania and Bulgaria) with 20 000 sampling sites. Soil coarse 

fragments layer and texture layers (clay, silt and sand) were mapped with a 500m grid cell 

resolution applying the Multivariate Adaptive Regression Spline model and texture is expressed 

as the relative percentage of sand (> 5 × 10−2 mm), silt (2 × 10−3 –  5 × 10−2 mm) and clay (< 2 ×

10−3 mm). Bulk density values were derived from packing density and clay content, following the 

equation of Jones et al. (2003) (EC-JRC, 2013). 

SOC values for topsoil (0-20 cm) were obtained through a map created according to LUCAS-

topsoil carbon data (Brogniez et al., 2015).  
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4.4.2 Soil Data – HWSD 

Soil datasets obtained from LUCAS topsoil database were lacking pH values. These values were 

obtained with the Harmonized World Soil Database (HWSD) (FAO et al., 2012). The data layers 

have a 30 arc-second resolution, with 15773 different soil mapping units. This database is a 

combination of existing regional and national updates of information worldwide. For the purpose 

of this thesis, we only used the parameters related to Alentejo pH and texture. 

Reliability of the information presented in this database is variable: the parts of the database that 

still make use of the Soil Map of the World such as North America, Australia, West Africa 

(excluding Senegal and Gambia) and South Asia are considered less reliable, while most of the 

areas covered by SOTER databases are considered to have the highest reliability (Southern and 

Eastern Africa, Latin America and the Caribbean, Central and Eastern Europe) (FAO et al., 2012). 

The properties considered are for the top-soil layer (0–30 cm). 

4.4.3 Land Cover Data – Corine Land Cover 

Datasets regarding land cover were taken from the CORINE land cover – 2006 (CLC, 2006) 

obtained at European Environmental Agency (available at http://www.eea.europa.eu/data-and-

maps/data/corine-land-cover-2006-raster). This dataset provides the physical characteristics of 

Europe’s surface (Büttner et al., 2011) and is one of the most complete datasets available (Lugato 

et al., 2014). The dataset used has 100 m resolution. CLC was used instead of Use and Land 

Occupation Charter of Portugal (COS) due to the availability of level 3 data map. COS is publicly 

available until level 2 only. 

CLC divides the characterization of land cover in 3 different levels of detail, all with different 

classes. Level 3 of CLC is the most detailed available. For the objectives of this dissertation we 

aggregated some of the different classes, finishing with a total of 13 classes described at Table 

6, allowing a simpler analysis of the results. Note that it would be possible to include all CLC level 

3 classes. That is precisely the advantage of this approach – all classes may be simulated as 

long as input parameters are available. There is no statistical limitation due to reliance on large 

SOC databases, as in proxy-based models. Since, however, the goal of the thesis is to 

demonstrate the potential of the approach, we opted to aggregate some classes. 

Table 6- Corine land cover classes and aggregation of classes obtained for this dissertation. 

CLC level 3 Agreggated classes (this dissertation) 

Continuous urban fabric Artificial Surfaces 

Discontinuous urban fabric 

Industrial or commercial units 

Road and rail networks and associated land 

Port areas 

Airports 

Mineral extraction sites 

Dump sites 

Construction sites 

Green urban areas 

Sport and leisure facilities 

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
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CLC level 3 Agreggated classes (this dissertation) 

Permanently irrigated land Permanently irrigated land 

Rice fields Rice fields 

Vineyards Vineyards 

Fruit trees and berry plantations Fruit trees and berry plantations 

Olive groves Olive groves 

Annual crops associated with permanent 
crops 

Non-Irrigated Arable Land 

Complex cultivation patterns 

Land principally occupied by agriculture, with 
significant areas of natural vegetation Non-irrigated arable land 

Agro-forestry areas Agro-forestry areas 

Broad-leaved forest Broad-leaved forest 

Coniferous forest Coniferous forest 

Mixed forest Mixed forest 

Natural grasslands Pasture 

Moors and heathland 

Sclerophyllous vegetation 

Pasture 

Transitional woodland-shrub Forest 

Beaches, dunes, sands Not Used 

Bare rocks 

Sparsely vegetated areas 

Burnt areas 

Glaciers and perpetual snow 

Water courses 

Water bodies 

Coastal lagoons 

Estuaries 

Sea and ocean 

Inland marshes Wetland 

Peat bogs 

Salt marshes 

Salines 

Intertidal flats 

4.4.4 Climate Datasets 

Climatic datasets were retrieved from 12 different meteorological stations within the Alentejo 

Region, available on Sistema Nacional de Informação de Recursos Hídricos (SNIRH) (available 

at http://snirh.pt/index.php?idMain=2&idItem=1) for the years since 2003 to 2008. The datasets 

retrieved were: hourly temperature, daily precipitation and daily pan evaporation and are the more 

complete available for Portugal’s Alentejo region. 

4.4.5 Climate Change Scenarios 

Our analysis uses a fixed time horizon of 100 years. This assumption, used for simplicity 

purposes, is analysed in the Discussion. To make 100 year simulations, climatic data from the 

past cannot simply be extended further in time. In light of climate change, climate scenarios must 

http://snirh.pt/index.php?idMain=2&idItem=1
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be included in the variables of the model. We analysed different scenarios for the climate data 

needed (temperature, pan evaporation and precipitation). Compared to other countries, starting 

from 1990 and until 2100, the temperature increase in Portugal will be higher than the other 

regions in Europe (Santos et al., 2002). Thereby, it is important to take into account these changes 

for Alentejo region in order to have more accurate assessments.  

These scenarios were retrieved from the Portuguese Project “Climate Change in Portugal. 

Scenarios, Impacts and Adaptation Measures” (SIAM) (Santos et al., 2002). This project started 

in 1999 and describes different climatic future scenarios based on models of atmosphere general 

circulation (Santos et al., 2002). 

For the temperature change values, we calculated the mean and deviation standard for all the 

scenarios evaluated by SIAM generated by the following general circulation models: CSIRO, 

ECHAM4, CGCM1, HadCM2-GGa2, HadCM2-GSa2, HadCM3-GG, HadCM3-GS, GFDL, NCAR 

and CCSR (Santos et al., 2002). These models are based on approximations to a large-scale of 

physical laws that represent the climate system. The models differ on, for example, numerics on 

atmospheric, ocean, cryospheric and terrestrial processes, horizontal and vertical resolution, 

parameterization (Randall et al., 2007). 

The precipitation values have a higher uncertainty. This is due to the irregular variations within 

the runs of the models and the larger differences from model to model than the temperature 

predictions (Santos et al., 2002). For these values, we calculated the mean and standard 

deviation for the precipitation changes from 2000 to 2100, for the proposed scenarios of SIAM on 

the Centre and South of the Western Iberia: HadCM2 GGa2, HadCM3 GG, HadCM2 GSa2 and 

HadCM3 GS. In the end, we obtained the values for temperature and precipitation increase 

described at Table 7. 

Table 7- Temperature and precipitation monthly increment and respective standard deviations 
obtained at Santos et al. (2002). 

 Increment Standard Deviation 

Temperature 0.004 ± 0.001 ℃ 𝑚𝑜𝑛𝑡ℎ−1 0.001 ± 0.0001 ℃ 𝑚𝑜𝑛𝑡ℎ−1 

Precipitation −0.07 ± 0.11 mm 𝑚𝑜𝑛𝑡ℎ−1 0.11 ± 0.01 mm 𝑚𝑜𝑛𝑡ℎ−1 

4.5 Unique Homogeneous Territorial Units 

The Alentejo region is not homogenous in terms of soils, climate and LU. For the intended 

regionalization of the simulations, Unique Homogeneous Territorial Units (UHTU) in Alentejo were 

obtained by the overlay of soil and climatic datasets described in Figure 11. Each UHTU was 

characterized by a distinct set of parameters corresponding to the intersection of the four variables 

indicated in Figure 11. The data sources for each of these variables are indicated in detail in 

sections 4.4-4.10 below. 

 

Figure 11 - Unique homogeneous territorial units (UHTU) composition. 



31 

 

After the overlay of these datasets, we obtained 2041 UHTU’s for the Alentejo region. These 

UHTU’s were used for simulations using DNDC and RothC. 

4.6 Specific DNDC datasets 

As shown in Table 5, DNDC requires additional data when compared to RothC. These additional 

data and the sources used are presented in the next sections. 

4.6.1 Climate Data and N concentration in precipitation 

Climatic data were retrieved from SNIRH for the same years of RothC data (from 2003 to 2008). 

The values needed to run DNDC are daily precipitation, maximum temperature and minimum 

temperatures. Climatic change scenario previously described was also applied to the program, in 

the alternative climatic options menu. N concentration in precipitation data was retrieved from 

EMEP (2016) map of 𝑁𝐻4 wet deposition and 𝑁𝑂3 wet deposition (annual means).  These data 

were measured directly from monitoring stations for the United States and Western Europe for 

the years from 1989 to 1994. The maps have a resolution of 0.5 x 0.5 degrees. 

4.6.2 Soil parameters 

Values for pH (maximum and minimum) were retrieved from HWSD (FAO et al., 2012). Soil bulk 

density, SOC and clay content (maximum and minimum) was retrieved from LUCAS topsoil 

database (Toth et al., 2013). HWSD values are for a 30 cm soil depth, while LUCAS topsoil 

database are for 20 cm. In order to exceed this mismatch, we assume that all the properties 

remain equal regardless of the depth. Salinity values for the region were retrieved from ESDAC 

(available at http://esdac.jrc.ec.europa.eu/content/potential-threats-soil-biodiversity-europe).  

4.6.3 Crop parameters 

DNDC provides datasets that can be used in the simulations. For this dissertation, we used the 

default cumulative temperature (ºC) data available on DNDC for each crop chosen. Also, we used 

for each 12 soil texture types in use, detailed data provided by DNDC: clay fraction, porosity, soil 

saturation conductivity (m/hr), soil moisture in water filled porosity at the field capacity point and 

at the plant wilting point. 

Due to the lack of information about water requirements for Alentejo’s crops, we estimate an 

upper bound value for each irrigated crop by summing precipitation and irrigation values. 

Maximum grain yield (kgC/ha) for each crop was estimated according to the productivity values 

of INE, for the maximum value for 10 years data (available at 

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados). To convert these values 

into carbon values, we assume that dry matter has 45 % of carbon content, according to Farina 

et al. (2013). 

http://esdac.jrc.ec.europa.eu/content/potential-threats-soil-biodiversity-europe
https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados
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4.6.4 Crop management practices 

DNDC requires data of irrigation area (%) for each UHTU. For irrigated crops we consider a value 

of 100% of area irrigated. Otherwise, for rainfed crops, irrigation area is zero. Crop management 

parameters such has planting and harvesting dates, flooding events and tillage practices were 

taken from GPP (2001) has described at Table Table 4.  Fertilizer and manure application values 

(kgN/ ha) for each crop were retrieved from Morais et al. (2016a).  

DNDC also requires the percentage of above-ground biomass that stays on the ground, i.e. that 

is a crop residue. To estimate these parameters, we assume that the biomass above-ground that 

is not harvest becomes a crop residue. According to specific harvest indexes the fraction that 

stays in the ground will be 

 𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 1 − 𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 . (3) 

4.7 Specific RothC Datasets 

Despite requiring less data, RothC also has specific data requirements that are different from 

DNDC’s. For RothC simulations, the model needs specific input parameters described in Table 

5, for each one of the UHTUs. The datasets were spatially referenced on ArcMap. A Visual Basic 

routine was created to put all the inputs from ArcMap in the program. 

4.7.1 Climate Data 

Climatic data were retrieved from SNIRH values for 12 different meteorological stations for the 

years from 2003 to 2008 (available at http://snirh.pt/index.php?idMain=2&idItem=1). The climate 

change scenarios described above were applied to the values of temperature and precipitation. 

Base monthly open pan evaporation values and monthly precipitation (for present time) were 

obtained from daily open pan evaporation values and daily precipitation values respectively. We 

summed all the daily open pan evaporation and daily precipitation for each month and divided 

them by the number of years. Average monthly mean temperature values were calculated based 

on hourly mean temperature. In order to calculate monthly mean temperature, we grouped all the 

hourly values for each month and calculated the mean temperature of each month for each year. 

Then we aggregate all the values in 12 groups, where each group represents a month, i.e. all the 

mean values of January are aggregated, independently the year they were recorded, and 

calculated the mean of these values.  This way we obtained average monthly values of pan 

evaporation, monthly precipitation and temperature, and respective standard deviations. We 

assume that all these three parameters have a normal distribution.  

4.7.2 SOC and Clay Data 

Inputs for SOC initial values and clay content for each UHTU were obtained from Brogniez et al. 

(2015) map based on LUCAS-topsoil carbon data. Clay content values were retrieved from the 

LUCAS Soil Database. The input for RothC of depth of soil layer simulated is 20 cm, the same as 

LUCAS Soil Database topsoil samples. Also for these two parameters, we recorded the standard 

deviation values obtained and assumed a normal distribution for each. 

http://snirh.pt/index.php?idMain=2&idItem=1
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4.7.3 Soil Cover 

Soil Cover inputs are required due the higher decomposability of carbon in the presence of fallow 

soils. For simulation aspects soil cover was considered zero for fruit, olives, wine crop. For forest, 

grasslands and shrublands we assume that soil cover is presented for the entire year. For irrigated 

and rainfed cereals crops we assumed: 

 - 1 for the months from seed to harvest; 

 - 0 for the other months. 

4.7.4 Calculation for the carbon inputs from plant residues 

To estimate the crop residues (tC/ha) and forest residues (tC/ha) we made an extensive search 

for crop residues values and for indirect parameters of harvest index, shoot-to-root ratios and 

residues/crop yield of each crop that enable the estimation of the residues. Crop residues are the 

wastes left on the ground resulting from the crops itself. These residues are a consequence of 

pruning and harvesting.  

The yield for each crop, represented at Table 8, was retrieved from INE database (available at 

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados), where we obtained the 

average values for the last 10 years of data available. We assume that dry matter from production 

values as 45 % of carbon content, according to Farina et al. (2013). 

Harvest index was used to estimate the values of aboveground biomass produced by each crop, 

according to 

 
𝐻𝐼 =  

𝑌𝑖𝑒𝑙𝑑 (𝑔)

𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔)
. 

(4) 

Shoot-to-root ratios (S:R) were used to estimate the belowground biomass values for each crop 

according to 

 
𝑆: 𝑅 =

𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔)

𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔)
. 

(5) 

After equations (4) and (5), crop residues are obtained according to  

 𝐶𝑟𝑜𝑝 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠[𝑡𝐶ℎ𝑎−1]

= (𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝑌𝑖𝑒𝑙𝑑) + 𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑 𝐵𝑖𝑜𝑚𝑎𝑠𝑠. 

(6) 

 

We took the yield from the aboveground biomass because the yield is the portion that is taken 

from the soil, while the rest of the aboveground biomass stays on the ground. 

Crop residues were also obtained according to the ratio of residue-crop defined by 

 
𝐶𝑟𝑜𝑝 𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠 [𝑡𝐶ℎ𝑎−1] =  

𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠

𝑌𝑖𝑒𝑙𝑑
. 

(7) 

The values for residues that we found for each crop using different methods often differed. For 

example, in the case of tomato crops, we estimate residues of 0.76 tC/ha and 91 tC/ha using 

different parameters for the same crop (tomato) and with the same yield (obtained from INE). To 

overcome this limitation and to understand which values were the most appropriate and knowing 

that for some cases calculating a mean of the input values would be inaccurate, like the case of 

tomato, we simulate all the options available using a uniform probability distribution. 

https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados
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Table 27 in the Appendix shows the values found in the literature review, with respective 

conversion to values in 𝑡𝐶ℎ𝑎−1 (input value necessary to RothC model), by applying the 

productivity values for Alentejo region (described at Table 7). 

Table 8- Alentejo crops productivity, ten year average - retrieved from INE. 

Crop 
Productivity (kg/ha) – ten year 

average (2006-2015) 

Oats Forage 17,198 

Olive 1,473 

Grape 5,439 

Orange 8,743 

Peach 13,748 

Forage Maize 53,633 

Irrigated Maize 10,824 

Tomato 71,931 

Potato 16,866 

Rice 6,125 

Barley 1,837 

Wheat 1,827 

 

4.7.5 DPM/RPM ratio 

As discussed above, in the RothC model SOC is initially distributed through 2 different 

compartments: decomposable plant material (DPM) and resistant plant material (RPM). Their 

ratio of distribution (DPM/RPM ratio) is an input needed for the model. RothC advises the value 

of DPM/RPM ratio of 1.44 for agricultural crops and improved grassland. For tree fruits, olives 

and vineyards we assumed a DPM/RPM ratio of 1, due to the greater content of lignin, which has 

higher resistance to decomposition (Jebari, 2016).  RothC was not calibrated specifically for forest 

even though it was already used to simulate it. To estimate SOC changes we assumed a 

DPM/RPM ratio of 0.25 for forest simulations (Jekinson et al., 1991).  Farmyard manure inputs 

have a different distribution for each compartment. The ratio of distributions is: 49% to DPM, 48% 

to RPM and 2% to humus (Coleman et al., 2014). 

4.7.6 Monthly Distribution of Carbon Inputs 

Carbon crop residues values are valid for an entire year and had to be distributed monthly. 

Monthly distribution of carbon residue inputs is dependent on the primary production and life 

stages of plants. Based on the methodology of Jebary et al. (2016) we assumed for cereal crops 

a distribution of 50% for the months of harvesting and other 50% in the three months earlier. For 

permanent crops such as fruit trees, olives and vineyards we assumed a distribution of 70% of 

inputs in the pruning months and the 30% rest on the 4 months earlier. The months of harvesting 

and pruning are indicated in GPP (2001). For forest trees, assuming no pruning neither 
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harvesting, we assumed as a simplification a constant provision of carbon residue inputs equally 

distributed during the year. 

4.7.7 Monthy Farmyard Manure Carbon Inputs 

Farmyard manure carbon inputs were retrieved from Morais et al. (2016a). Yearly values also had 

to be distributed among the months when farmyard manure is applied to the crops. These months 

are indicated by GPP (2001). Table 9 summarizes all the information for the crops where farmyard 

manure is applied. 

Table 9- Farmyard manure annual values and respective standard deviation and application 
months. 

 Manure (tC/ha) 
Manure Standard 
Deviation (tC/ha) 

Application 
Months 

Tomato 9.9 × 10−3 3.7 × 10−4 May to July 

Maize Forage 8.8 × 10−2 3.3 × 10−3 June 

Maize Irrigated 1.7 × 10−2 6.6 × 10−4 July 

Orange 1.3 × 10−2 4.9 × 10−4 April 

Peache 1.1 × 10−3 4 × 10−4 June 

Potato 2.2 × 10−1 8 × 10−3 May 

4.7.8 Irrigated Crops – Irrigation Values 

RothC does not provide irrigation options. Water input values are disregarded and are not 

modelled by the program. For irrigated crops, this is an information with major importance. With 

more availability of water in the soils, carbon decomposability will be higher (Kutchs et al., 2009).  

To overtake the lack of irrigation in RothC, we sum water from irrigation to the precipitation data. 

For each irrigated crop, we retrieved the irrigation water values from GPP (2001), divided them 

throughout the irrigation months for each crop and summed them to the precipitation for each 

month. These data are shown in Table 4. 

4.7.9 Model Initialization 

The version used of RothC is a modified version, already parameterized for the Mediterranean 

region by Farina et al. (2013). To initialize the program, we needed to distribute SOC initial values 

through the five compartments of SOC: RPM, DPM, Hum, BIO and IOM. According to 

Weihermüller et al. (2013) SOC is distributed through these departments according to 

 𝐼𝑂𝑀 = 0.049 𝑆𝑂𝐶1.139, (8) 

 

 𝑅𝑃𝑀 = (0.1847 𝑆𝑂𝐶 + 0.1555) × (𝐶𝑙𝑎𝑦 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 1.2750)−0.1158, (9) 

 

 𝐻𝑈𝑀 = (0.7148 𝑆𝑂𝐶 + 0.5069) × (𝐶𝑙𝑎𝑦 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 0.3421)0.0184, (10) 

 

 𝐵𝐼𝑂 = (0.0140 𝑆𝑂𝐶 + 0.0075) × (𝐶𝑙𝑎𝑦 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 8.8473)0.0567, (11) 

where “Clay Fraction” is the clay content expressed in %, IOM is the inert organic matter 

expressed in tC ha-1 ,RPM is the resistant plant material expressed in tC ha-1, BIO is the microbial 
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biomass expressed in tC ha-1, HUM is the humified organic matter expressed in tC ha-1, SOC is 

soil organic carbon expressed in tC ha-1. 

These distributions are only dependent on the initial SOC values and clay fraction of the soil. DPM 

compartment distribution is calculated according to the results of these equations. If the SOC 

value is higher than the sum of the four compartments described above, then DPM compartment 

will have the rest of SOC fraction that was not distributed. A schematic distribution of SOC through 

these compartments is shown in Figure 12. 

 

Figure 12 – Schematic of RothC model pools structure - adapted from the RothC manual. 

DPM - decomposable plant material; RPM - resistant plant material; IOM - inert organic matter; 

BIO - microbial biomass; HUM - humified organic matter  
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5 Estimation of SOC depletion due to land use with DNDC 

5.1 Summary 

 
The goal with DNDC was to simulate soil dynamics for each UHTU in order to enable the 

calculation of CFs based on scenarios. Due to computational problems, i.e. the amount of time 

required to run a simulation with all the UHTU was 5 days and for just one UHTU was 4 minutes, 

we started to make an analysis for only one specific UHTU. In this section we describe the 

implementation of DNDC and the problems encountered. All the datasets used are described at 

the previous chapter. 

5.2 Method 

In this dissertation, DNDC was run in regional mode, to simulate the dynamics of C and N for 

different UHTU. Runing DNDC in regional mode requires information of location, climate, soil 

properties, cropping systems and farming management practices for each UHTU. DNDC provides 

default settings for 88 different crops and 12 soil types that can be modified by the users.  

We started with the preparation of all the information for each UHTU and ran the program. In this 

thesis we chose one UHTU only to analyse results, which were similar regardless of the region 

chosen. This UHTU had a present LU of Artificial Surface, and the intended LUC was rainfed 

barley. We also performed a sensitivity analysis in order to understand which parameters would 

have a greater effect on the results. By this time, we had already successfully simulated this 

UHTU for transformation to rainfed barley, and knew that the results showed an increase of SOC 

stocks (as shown in Chapter 6). 

In order to understand the sensitivity of the model to the inputs, we made different simulations, 

changing one input at a time and understanding its impact on the final results. In the end we made 

14 different simulations. The results of these simulations are explained next. 

5.3 Results 

Table 10 and Table 11 present the initial input values for transformation to rainfed barley in 

UHTU 1. 

Table 10- Soil parameter inputs given to DNDC for UHTU 1 region. 

Lon – Longitude; Lat – Latitude; N – Nitrogen; dep – deposition; SOC – Soil Organic Carbon; 
max – Maximum; min – Minimum 

Soil Value Soil Value 

Lon -7 pH max 6.8 

Lat 39 pH min 6.7 

N-dep 3 × 10−2 (ppm) Max Bulk Density 1.38 (g/cm^3) 

SOC max 1.3 × 10−2 kgC/kg 
soil 

Min Bulk Density 1.34 (g/cm^3) 

SOC min 1.2 × 10−2  kgC/kg 
soil 

Slope 45 

Clay max 2.8 × 101 (fraction) Salinity 0 

Clay min 2.2 × 101 (fraction)   
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Table 11- Crop and management parameter inputs given to DNDC for UHTU 1 region. 

 TDD – thermal degree days 

According to the initial values described in Table 10 and Table 11, and running a 100-year 

simulation on DNDC for transformation from artificial surface (the current LU in UHTU 1) to rainfed 

barley, we obtained SOC changes depicted in Figure 13. 

 

 

 

 

 

 

Figure 13- SOC dynamics using a 100-year simulation in DNDC for UHTU 1. 

UHTU – Unique Homogeneous Territorial Unit; SOC – soil organic carbon 

The curve has a downward slope which is unexpected considering that, in the original SOC data, 

rainfed barley plots typically have higher SOC than artificial plots. We thus proceeded with the 

sensitivity analysis of parameters to understand this behaviour. We made a total of 14 different 

simulations, where in each simulation one input changed. The left column of Table 12 indicates 

the input that was changed in each simulation, while the right column represents the total SOC 

change for the 100-year simulation. A negative SOC change value indicates a depletion on SOC 

stocks and a positive value on SOC change indicates a gain on SOC stocks. We can see that the 

main contributors to the results are SOC initial values, clay fraction and bulk density. However, 

there is SOC depletion in every case. 

Table 12- Description of the different DNDC simulations, indicating input parameters changed 
and the consequent results for SOC differences between year 100 and year 0. 

Simulation Type 
SOC difference after 100-year simulation 

tC/ha 

Original -27.15 

Maximum Grain Yield x5 = 4735 kgC/ha -27.11 

Water demand = 0 -27.10 

Fertilization x10 = 400 kgN/ha -27.17 

Manure = 100 kgN/ha -27.15 

Intial SOC divided by 10 -2.68 

Crop Value Management Value 

Maximum Grain 
Yield 

947 kg C/ha Fertilization 40 kgN/ha 

TDD 1,300 ºC Flooding 0 

Water demand 
250 kg water/kg dry 

matter 
Irrigation 0 

Plantation October 
Fraction of 

aboveground residue 
  5.6 × 10−1 

Harvesting July Tillage April, 10 cm 

  Manure  
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Initial SOC divided by 100 -0.22 

Clay min and max +20 % -19.98 

Clay min and max -20% -20.1 

pH = 9.8 -27.14 

pH = 3.8 -27.13 

Bulk max = 2.38 
Bulk min = 2.34 

-46.88 
 

Bulk max = 0.38 
Bulk min = 0.34 

-7.20 

Salinity = 1 -27.15 

Bulk – bulk density; min – minimum; max – maximum; SOC – soil organic carbon 

5.4 Discussion 

The first results obtained using the base simulation (where the most likely estimates for each 

variable were used) showed a SOC decrease of almost 30 tC/ha as we can see at Figure 12. 

Also, for other UHTU’s the same decrease dynamic was encountered while testing DNDC 

simulations. The sensitivity analysis showed that, even when assuming values with completely 

different magnitudes, e.g. dividing the SOC initial value by 100, we would still obtain a decrease 

of SOC stocks following LUC. A possible explanation for this problem is that the model is not 

calibrated for the Mediterranean region. Also, because the simulations had to be made in regional 

simulation mode, the program does not allow a calibration with other parameters.  

Another aspect encountered using the DNDC model is that manure is not being included in the 

calculations. We can see at Table 12 that the results remain equal to the base case simulation 

when manure inputs are changed. We tried different ways to write this input at the DNDC input 

text files. DNDC has a user guide available, with the steps required to implement the model and 

how to present and write in text files the input values. DNDC also has an example for a region 

called Shangrila, showing example text files for the user to try to run the simulations and to learn 

how to implement the model. We observed that the instructions of the user guide available on 

how to create the text files were different from the text files for the Shangrila example. We also 

tried to run the example simulation given already on DNDC and changed the manure input and 

saw that results remained at the same levels. This means that this input is unaccounted for in the 

results.  

5.5 Conclusion 

DNDC is a much more complex model than RothC, with more specific inputs needed for the 

simulations. With all the limitations on the instructions of the user guide of DNDC, which are 

partially incomplete, the manure input value un accounted for in simulations, the computational 

limitation of running time and the lack of regional calibration of the model, we concluded that it 

would be impossible to obtain accurate regionalized CFs even for simply one UTHU in Alentejo. 
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6 Estimation of SOC depletion due to land use with RothC – 
Simulations 

6.1 Summary 

We simulated soil dynamics using RothC with the objective of obtaining SOC changes as a 

consequence of LUC, which is essential to calculate CFs. For each simulation with RothC we 

obtained a curve representing SOC changes for each UHTU and for each LUC intended. One 

key variable here was the amount of carbon in crop residues. We used the most likely estimates 

to run the simulations. The crop residues variable will be further analysed in the next section of 

this dissertation. All other datasets needed were previously described in section 4.9 of this 

dissertation. In this section we present the method used to prepare and run the simulations and 

the results obtained. 

6.2 Method 

6.2.1 Matlab Implementation 

The original version of the RothC model runs one region or location (i.e. on UHTU) at a time. This 

characteristic would be a computational problem given the amount of UHTUs in our work. In order 

to overcome this issue, we obtained a modified version of RothC for Microsoft Excel. This RothC 

version was provided by Jorge Álvaro-Fuentes from Estación Experimental de Aula Dei. This 

modified version allowed us to run all UHTUs simultaneously, although it took 7 hours to complete 

one simulation for the 2041 UHTUs and obtain SOC dynamics for 100 years. Due to our necessity 

to run different simulations for each UHTU in order to simulate different LUC, this amount of time 

was a computational problem. To reduce the amount of time required for the simulations, we 

wrote a version of RothC in Matlab that requires only 30 seconds to complete a simulation for the 

2041 UHTUs. With this new version, we eliminated time restrictions and were able to make deeper 

analyses of RothC and its parameters.   

This analysis was made using two different procedures: (1) using the most likely estimate for each 

variable; and (2) assigning an uncertainty distribution to each variable and using a Monte Carlo 

simulation. This type of simulation is used to account the variability and uncertainty in the 

assessments (explained in Chapter 7), studying the contribution of each parameter to the range 

of results. A model that does not explicitly address uncertainty is a deterministic model. Because 

we assumed that the input values used in case (1) are the mean values (the most likely estimates), 

this deterministic model is considered a base case scenario. In the case of Monte Carlo 

simulation, each input parameter has a statistical distribution and, for each distribution, random 

samples are calculated. These random samples were then the input values for the simulations 

(Raychaudhuri, 2008). 

To enable this analysis, in order to account for a wider range of values and associated error, we 

modified once again the Matlab version of the RothC model. Instead of giving only one input value 

for each parameter, the program is given a mean value and a standard deviation for each variable, 
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namely pan evaporation, temperature, precipitation and farmyard manure for each UHTU. The 

program, by running several iterations (up to 100), generates random numbers for a normal 

distribution and runs the simulations for each iteration. In the case of crop carbon residues, due 

to a lack of data, we were unable to calculate the parameters of a normal distribution. In that case 

we assumed a uniform distribution where any number within the range determined by the lower 

and higher estimate was assigned equal probability. Thereby, each iteration has as inputs 

different random values within the ranges defined in the beginning of the model and the model 

ran with that distinct set of parameter in each iteration. We calculated the mean of each 

parameter, for 100 iterations for each UHTU and respective standard deviation. This later version 

of the RothC model in Matlab takes 10 minutes to complete a simulation for the 2041 UHTU’s for 

100 iterations.  

6.2.2 RothC simulations 

With the modified version for Matlab of RothC we were able to simulate soil dynamics for all 

UHTUs. To start this process, RothC was given values of SOC content and clay fraction that are 

the initial characteristics of each UHTU. The information of which LU is present at year 0 is given 

by the classification in CLC (2006). Although this information does not interfere with the 

simulations at this point (it only intervenes in the calculation of CFs), it was useful for our 

interpretation. From that starting point of SOC content and clay fraction, RothC simulates the soil 

dynamics, according with the climate data and the management options given. In this simulation 

we go from one specific initial land use (𝐿𝑈1), to another land use (𝐿𝑈2) defined by the 

management options. A schematic representation of this procedure is shown in Figure 14. 

 

 

Figure 14- Schematic of a RothC simulation starting from a land use 1 (LU1) and changing it to 

a land use 2 (LU2). 

LU1 – first or baseline land use; LU2 – second land use (after transformation) 

We simulated each UHTU different times, with different management options, in order to obtain 

different 𝐿𝑈2. This way we obtained different outputs (𝐿𝑈2) for each UHTU. The possible 𝐿𝑈2 are 

indicated in Table 13. This means that we calculated the resulting SOC dynamics in each UHTU 

for each 𝐿𝑈2 independently. 
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Table 13- Crops types intended for the results obtained through RothC model. 

𝑳𝑼𝟐 Irrigation Option 

Tomato Irrigated 

Oats Rainfed 

Wheat Irrigated 

Barley Rainfed 

Forage Maize Irrigated 

Maize Irrigated 

Rice Irrigated 

Peach Tree Irrigated 

Orange Tree Irrigated 

Vineyards Rainfed 

Olive Irrigated 

Olive Rainfed 

Pasture Rainfed 

Potato Rainfed 

Pine Rainfed 

Eucalyptus Rainfed 

Cork Rainfed 

Holmoak Rainfed 

Oak Rainfed 

Shrublands Rainfed 

Grasslands Rainfed 

LU2 – Land use after the transformation process 

We thus ran a total of 20 different simulations for each UHTU with the objective to obtain all the 

intended 𝐿𝑈2. After these simulations, for the CFs calculation in Chapter 9, we needed to make 

additional simulations. Now, instead of starting from the initial SOC content of 𝐿𝑈1, we started 

with an initial SOC content obtained from the last SOC content value of 𝐿𝑈2, and simulated each 

UHTU in order to obtain a third LU. This third LU is the respective PNV of each UHTU. Figure 15 

is a representation of the process. The justification to this extra simulation to PNV is explained in 

section 9.1.2 (page Error! Bookmark not defined.). For this last process, 20 additional 

simulations had to be run with RothC. 

 
Figure 15- Schematic of a RothC simulation starting from a land use 1 (LU1), changing it to a 
land use 2 (LU2) and then changing it to a land use 3 that corresponds to the potential natural 
vegetation (PNV). 

LU1 – first land use; LU2 – second land use (after first transformation); PNV – potential natural 
vegetation 

After this procedure, we obtained the dynamic SOC curves needed in order to calculate the CFs. 

With the modified version of Matlab, we obtained results for the Monte Carlo simulations and for 

the best case scenario. The latter is obtained through a simulation using only the mean values of 

each parameter, without the deviation standards. 
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6. 3 Results 

RothC simulates the dynamics of soils, starting from an initial value of SOC for each UHTU for 

year zero. From that point, RothC gives SOC stock values for each of the 100 years simulated. 

Table 13 shows the mean SOC initial values given to RothC for the year zero for each of the CLC 

reclassification proposed in Table 6. To obtain these values presented at Table 13, we aggregated 

each UHTU to its respective CLC class and calculated the mean SOC stocks using the LUCAS 

topsoil database. The classes that present lowest SOC stocks are permanently irrigated land, 

vineyards and olive groves. Artificial surfaces are the fifth class with lowest values. All the forest 

classes, pasture and wetlands have the highest values. Starting with these baseline SOC stocks, 

we simulated different LUC. The results of these simulations are presented in Table 15, Table 16, 

Table 17, Table 18 and Table 19 for barley, wheat, tomato, olive rainfed and pine, respectively. 

The values in the tables are the change in SOC stocks, i.e. 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1 and thereby 

positive values represent a gain in SOC stocks along 100 years, while negative values are losses 

of SOC stocks. These tables, in general, represent a SOC change for a LUC of “what is there at 

year 0” to something else. The present land use (𝐿𝑈1) is shown in the first column, with 14 different 

land use classifications. The LU obtained after the transformation (𝐿𝑈2) is represented by the next 

three columns, where the “best estimate” column represents the values of the simulation with 

mean (or “best estimate”) values for all the inputs, without considering the associated error. The 

“100 iteration” column represents the average values obtained after 100 iterations. The “Standard 

Deviation” column represents the standard deviation results obtained after 100 iterations.  

Table 14 - Initial SOC input values for the reclassified CLC. Each UHTU was aggregated into 
the correspondent CLC class. 

Initial SOC input values mean tC/ha 

Artificial Surfaces 49.51 

Non-Irrigated Arable Land 50.44 

Pastures 65.68 

Wetlands 65.39 

Permanently Irrigated Land 42.87 

Rice 44.33 

Vineyards 42.04 

Fruit trees and berry plantations 42.17 

Olive Groves 45.48 

Agro-forestry areas 55.24 

Broad-leaved forest 66.21 

Coniferous forest 71.91 

Mixed Forest 73.13 
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Forest 68.37 

SOC – soil organic carbon 

When some LUC results, for instance, in a decrease of SOC, it means on average SOC 

decreases over 100 years in the study region, not for each UHTU individually. It means that the 

mean of the overall values of UHTU organized in their respective CLC classes are negative. All 

results presented are obtained using the most relevant crop carbon residue. A further analysis of 

this parameter is described at section 7. The values presented here are a mean of the SOC 

changes obtained for different UHTU, and not the results for one specific UHTU.  

Table 15 depicts LUC to barley. Crop carbon residue used for this simulation was 0.991 tC/ha 

(APA, 2011). Regardless of the baseline LU, SOC always decreases after transformation to 

barley. The classes with a higher SOC decrease for transformation to barley are pasture, wetlands 

and the five forest classes. The best estimate simulations are within the range of the 100 iteration 

simulation values, considering the standard deviation. 

Table 15- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to barley. 

Final land use 
(tC/ha) 

Barley - Best 
Estimate 

Barley 100 
iterations 

Standard Deviation 

Artificial Surfaces -9.08 -12.87 8.24 

Non-Irrigated 
Arable Land 

-10.29 -14.40 9.30 

Pastures -16.55 -22.00 11.11 

Wetlands -18.78 -22.31 12.60 

Permanently 
Irrigated Land 

-6.47 -10.18 8.24 

Rice -6.90 -10.79 8.27 

Vineyards -4.23 -8.86 7.96 

Fruit trees and 
berry plantations 

-4.44 -9.02 7.65 

Olive Groves -7.20 -11.22 8.87 

Agro-forestry areas -13.06 -17.26 9.73 

Broad-leaved forest -19.20 -23.54 11.26 

Coniferous forest -22.19 -26.52 11.16 

Mixed Forest -23.28 -27.20 12.05 

Forest -20.20 -24.62 11.86 

Next we present the values for LUC to rainfed wheat in Table 16. The crop carbon residue used 

was 1.499 tC/ha (Álvaro-Fuentes et al., 2014; Jebari, 2016). There is an increase in SOC stocks 

in the LU1 classes of permanently irrigated land, vineyards and fruit trees and berry plantations 

for the best estimate simulation. In the case of 100 iteration simulation, all the classes present a 

decrease on SOC stocks.  
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Table 16 - SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to wheat.  

Final land use (tC/ha) 
Wheat - Best 

Estimate 
Wheat 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -1.39 -6.28 9.37 

Non-Irrigated Arable Land -3.60 -7.90 10.39 

Pastures -9.50 -15.28 12.34 

Wetlands -12.69 -16.39 14.07 

Permanently Irrigated Land 0.21 -3.65 9.38 

Rice -0.85 -4.51 9.21 

Vineyards 2.75 -2.25 9.19 

Fruit trees and berry plantations 2.75 -2.13 8.97 

Olive Groves -0.06 -4.51 9.88 

Agro-forestry areas -6.67 -10.93 10.71 

Broad-leaved forest -13.00 -17.31 12.16 

Coniferous forest -16.40 -20.95 12.05 

Mixed Forest -17.31 -21.11 13.14 

Forest -13.90 -18.41 12.83 

For the LUC to tomato, simulations for the best estimate case, presented in Table 17, show SOC 

stocks increase for the classes of permanently irrigated land, rice, vineyards, fruit trees and berry 

plantations and olive groves. All 100 iterations have a decrease in SOC stocks. The decrease is 

smaller for the same classes that presented an increase for the best estimate case. The crop 

carbon residue input used for these simulations was 1.5 tC/ha, a mean value obtained from the 

two lowest values found in the literature review (Dias and Azevedo, 2004; Alves, 1995). 

Table 17- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to tomato.  

Final land use (tC/ha) 
Tomato Best 

Estimate 
Tomato 100 
iterations 

Deviation 
Standard 

Artificial Surfaces -1.66 -6.55 9.34 

Non-Irrigated Arable Land -2.99 -7.51 10.47 

Pastures -9.09 -15.22 12.35 

Wetlands -11.94 -16.02 13.88 

Permanently Irrigated Land 0.88 -3.20 9.48 

Rice 0.43 -3.50 9.55 

Vineyards 3.41 -1.80 9.06 

Fruit trees and berry 
plantations 

3.26 -2.10 9.03 

Olive Groves 0.30 -4.27 10.08 

Agro-forestry areas -5.91 -10.61 10.80 

Broad-leaved forest -12.22 -16.89 12.36 

Coniferous forest -15.45 -20.17 12.17 

Mixed Forest -16.53 -20.43 13.22 
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Forest -13.14 -17.85 12.90 

For the case of LUC to rainfed olive, the only case where we obtained a gain (almost null) in SOC 

stocks is the change from vineyards for the case of best estimate, as shown in Table 18. For the 

100 iterations, all the mean values obtained show SOC losses. The values used for crop carbon 

residues were a mean value of 1.7165 (Blasi et al., 1997 and Nieto et al., 2010). 

Table 18- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to rainfed olive.  

Final land use (tC/ha) 
Olive Rainfed 
Best Estimate 

Olive Rainfed 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -5.77 -11.38 9.54 

Non-Irrigated Arable Land -7.40 -12.52 10.24 

Pastures -14.75 -21.42 11.91 

Wetlands -16.28 -20.55 13.91 

Permanently Irrigated Land -2.62 -7.34 9.30 

Rice -2.66 -7.91 9.20 

Vineyards 0.02 -5.96 9.21 

Fruit trees and berry 
plantations 

-0.53 -6.41 9.17 

Olive Groves -3.88 -8.90 9.84 

Agro-forestry areas -10.46 -15.73 10.66 

Broad-leaved forest -17.91 -23.43 11.86 

Coniferous forest -21.16 -26.90 12.16 

Mixed Forest -22.53 -27.72 12.67 

Forest -18.98 -24.39 12.29 

The last case presented in this section is a LUC to pine forest. The crop carbon residue used for 

this simulation is 2.96 tC/ha (APA, 2015). We can observe a significant gain in the SOC stocks 

for all the LU classes for both the best estimate and 100 iterations simulations.  

Table 19-SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to pine forest.  

Final land use (tC/ha) 
Pine Best 
Estimate 

Pine 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 40.47 29.48 16.96 

Non-Irrigated Arable Land 35.52 26.58 17.43 

Pastures 31.51 20.28 19.18 

Wetlands 26.88 20.20 21.73 

Permanently Irrigated Land 39.49 31.02 16.63 

Rice 38.31 30.36 16.23 

Vineyards 43.87 33.04 16.89 

Fruit trees and berry plantations 43.71 32.75 17.10 

Olive Groves 39.79 30.23 17.29 

Agro-forestry areas 32.43 23.56 17.70 

Broad-leaved forest 25.40 17.08 18.86 
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Coniferous forest 21.86 13.97 18.74 

Mixed Forest 20.80 13.37 19.94 

Forest 25.04 16.33 19.43 

 

The results obtained for the other simulations are represented in the Appendix from Table 28 to 

Table 42. 

6.4 Discussion 

The values obtained for the baseline SOC stocks, described at Table 14 were directly obtained 

using the CLC (2006) maps and LUCAS Topsoil database. In the specific case of artificial 

surfaces, we can see that SOC values obtained are higher than some agricultural crops 

(permanently irrigated land, rice, vineyards, fruit trees and berry plantations and olive groves). 

These values for artificial areas mean that while there are some UHTUs with a LU of artificial 

surface with a lower SOC content (e.g. 30 tC/ha) there are other UHTUs significantly higher 

values (e.g. 80 tC/ha). Such high SOC contents are unexpected for an artificial surface. This is 

nevertheless a direct observation of the data reported in the LUCAS database. It is possible that 

this is explained by the sampled locations – so-called “artificial areas” are probably vegetated 

areas in urban locations, which would explain the high SOC concentrations. All the other baseline 

SOC stocks are within the expected range. The classes of forests, pasture and wetlands present 

the highest mean SOC values against permanent and annual crops. 

Analysing the simulations results obtained through RothC, in Table 15, the values obtained for all 

LUC to barley are lower than expected. We expected a decrease of SOC stocks for classes such 

as pasture, wetland and forests, considering the average SOC measurements in the LUCAS 

database for each LU class. The negative values of Table 15 can be explained by the low estimate 

of crop carbon residue given to RothC. In this case the value given was the highest possible 

obtained in the literature review: 0.991 tC/ha. Even though it was the highest found, it is still fairly 

low when compared to the estimates found for other similar crops. In the simulation of LUC to 

wheat, the values obtained for the best estimate case are more in line with expectations that the 

ones obtained for barley. This is true despite the fact that for non-irrigated arable land classes 

(i.e. the class where wheat is aggregated), it presents a loss of more than 3 tC/ha, while the 

expected value for this specific case would be a SOC change near to zero. The value of crop 

carbon residue used was 1.5 tC/ha, a value much higher than the one used for barley. 

The correspondent class of CLC for tomato is permanently irrigated land. For LUC from 

permanently irrigated land to tomato, using the best estimates, we can see that the values for this 

class are nearly constant, as it would be expected from the original data. Permanently irrigated 

land is the CLC class for tomato and as such no large variation of SOC was, at first glance, likely. 

Regarding the crop carbon residue values obtained for tomato in our literature review, we found 

values with different magnitudes. If we used any value other than the ones by Dias and Azevedo 

(2004) and Alves (1995), the values would be higher that any value found for forest crops in our 
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literature review. These values would then lead to completely different results, much higher that 

forest classes. 

As we can see in Table 37, LUC from the CLC class of Pasture to Pasture (obtained using the 

best estimate simulation of RothC) will result, in the best estimate case, in a substantial decrease 

of SOC of 16.2 tC/ha. For this case the values were expected to remain approximately constant. 

We can then conclude that such results are a consequence of the lower value of crop carbon 

residue obtained at the literature review of 0.8 tC/ha as described in Table 27. 

For pine forests, we obtain a SOC increase for the best estimate case of 33 tC/ha for all regions. 

These results should be interpreted as valid for young forests only, when more C is stored, 

corresponding to the C input we considered. Another reason for the higher results is that we 

assumed permanent soil cover in this simulation. 

An example of the impact of soil cover is, for instance, the comparison of this last simulation (pine 

forest) with the results obtained for potato. For potato, whose results are described in the 

appendix in Table 29, we obtained gains of SOC almost as large as to the ones obtained in the 

forest simulations (oak, holmoak, cork). These high results are partially explained by the high 

values found in the literature review for potato carbon residues, but not entirely since potato 

residues are actually higher than pines.. The difference is that for pine forest we assumed the soil 

was covered for the entire year, and only between seeding and harvest months in the case of 

potato. Potato carbon residues generate high increases of SOC stocks, but because there is no 

soil cover for the entire year, the values of SOC stocks are lower than in forests. Another example 

is the simulation of LUC to olives. The values of crop carbon residue used were the ones from 

Blasi et al. (1997) and Nieto et al. (2010). Even though these values are the highest obtained in 

the literature review, we obtain for the CLC class olive groves a loss of more than 3 tC/ha. It would 

be expected, as it occurred for tomato simulations, that the values remained constant, or 

approximated the ones from the baseline values. The explanation for the loss is that for 

permanent crops we do not assume full soil cover during the entire year. 

We can see, for all cases, that in the 100-iteration simulation (i.e. Monte Carlo simulation) the 

values obtained were always lower that the ones obtained for the best estimate case. This means 

that the Monte Carlo simulation is underestimating the results. Since the best case is equal to the 

mean of the distribution probability, the standard deviation for each parameter should not 

influence the mean of the results. Monte Carlo simulations should only allow us to obtain an 

estimation of the error associated to the simulations. In the next chapter we will make a further 

analysis of this problem encountered. 

6.5 Conclusions 

We conclude that some of the values of crop carbon residue are very uncertain and insufficiently 

characterized by available data to enable a full analysis of the SOC dynamics and its uncertainty. 

The numbers obtained in the literature review were insufficient for accurate calculations of SOC 

changes for some LUCs. For cases such as barley, even though we selected the highest available 

value, the results obtained were below expected. Carbon residues are therefore a crucial 
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parameter and future research efforts should clearly focus on obtaining better quality estimates. 

Another crucial parameter is soil cover. Independently of the crop carbon residues input given, 

the percentage of the year when the soil is covered can determine much of the fate of the 

accumulation of SOC. 

For the case of Monte Carlo simulations, the results are all below the best estimate case. A deeper 

analysis to understand why the Monte Carlo simulations under estimate the results and the 

influence of the input parameters is done in the next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



50 

 

7. Estimation of SOC depletion due to land use with RothC - 
Determination of sensitivity to parameters 

7.1 Summary 

One of the main determinants of the results of RothC is crop carbon residues (𝑡𝐶ℎ𝑎−1). In the 

literature we found some of these values for Portugal and also for Mediterranean regions; we 

often found multiple values for the same crops and region, but with different magnitudes. For 

example, in the case of tomato, carbon residues range between 0.76 𝑡𝐶ℎ𝑎−1 and 64 𝑡𝐶ℎ𝑎−1, 

using the yield of tomato for Alentejo obtained from INE (2015) –values shown in Table 17. 

Climate variables obtained from INE and farmyard manure are also highly variable and influence 

results significantly. In this section, using the modified version of RothC presented in Chapter 6, 

we evaluate the role of each variable in results and find plausible domains of acceptable values. 

We made a statistical analysis, using different UHTUs with different characteristics in order to 

understand which values should be used for the calculation of CFs.  For the case of the Monte 

Carlo simulation, the results obtained under estimated the expected results. For that reason, also 

in this chapter, we aimed to find the root of the problem and a possible solution. 

7.2 Method 

7.2.1 Parameter Sensitivity 

After running 100 iterations of the modified RothC model for different regions, we used IBM SPSS 

22 to adjust a linear regression model to our data. It was our intention to fit a linear equation where 

the independent variables were the inputs and the dependent variable was the output of RothC. 

Linear regression is used when we want to predict a value from a parameter, based on values of 

other parameters. At its core RothC consists of systems of non-linear equations, and as such the 

traceability of how each parameter influences results is reduced. The model has a tendency to 

be looked at as a “black box” and its results are often “just so” explanations. A linear approximation 

of the results using this statistical procedure was therefore aimed at obtaining a simplified insight 

on the role of each parameter as a determinant of the results. 

The linear regression model, where 𝑥′𝑠 are the independent variables and 𝑦 is the dependent 

variable, was defined as 

𝑦 =  𝛽0𝑥0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 +  𝜀. (12) 

In the case of this dissertation, the dependent variable is the difference in SOC after 100 years 

and in the baseline year, after LUC.  The independent variables are the inputs that the model 

takes in, i.e., mean monthly temperature, monthly pan evaporation, monthly precipitation, crop 

carbon residues, initial SOC and farmyard manure. The equation obtained from this linear 

regression takes the form 

∆𝑆𝑂𝐶 [𝑡𝐶ℎ𝑎−1] = 𝑇 × 𝑥0 + 𝐸 × 𝑥1 + 𝑃 × 𝑥2 + 𝑅𝑒𝑠 × 𝑥3 + 𝑆𝑂𝐶𝑖 × 𝑥4 + 𝐹𝑌𝑀 × 𝑥5, (13) 

where ∆𝑆𝑂𝐶  is the SOC change along the 100 years, i.e. 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 −  𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1, T is the mean 

monthly temperature, E is the monthly pan evaporation, P is the mothly precipitation, Res is the 
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crop carbon residues, SOCi is the initial SOC and FMY is the farmyard manure. The independent 

variables 𝑥′𝑠 are the correspondent mean values for the 100 iterations of T, E, P, Res, SOCi and 

FYM respectively.  

After obtaining these linear regressions, it was possible to understand the weight that each RothC 

input has on the results. This analysis was made obtaining the linear regressions of different 

UHTUs with different characteristics.  

7.2.2 Monte Carlo Simulations 

To understand why the Monte Carlo simulations under estimate the expected results, we first ran 

the simulations for a different number of iterations. These first look lets us understand if 100 

iterations are sufficient for the Monte Carlo simulation. First for 100 iterations, second for 200 

iterations and then for 1000 iterations. All of these attempts were ran without changing the 

probability distribution of any parameters. 

Next, to evaluate the distribution obtained by the random numbers obtained through Matlab for 

the normal distribution given, we ran the model several times for different numbers of iterations 

(100, 200, 300, 400, 500, 750 and 1000 iterations). In this case we programmed the Matlab 

version of RothC to provide as output not only the SOC changes but also all the values of the 

parameters obtained using the random numbers for each iteration. 

For the last analysis, and for a 100 iteration simulation, we manually reduced the standard 

deviation of each variable in order to understand how the variability in input data influences the 

magnitude of final results. 

7.3 Results 

7.3.1 Parameters Sensitivity 

We define the following acronyms used in this section: C is clay fraction in %, E is yearly Pan-

Evaporation in mm, T is annual temperature in ºC, Res is the Crop Carbon Residues in 𝑡𝐶ℎ𝑎−1, 

SOCi is the initial SOC input in 𝑡𝐶ℎ𝑎−1, P is the yearly precipitation in mm, and FMY is the yearly 

farmyard manure in in 𝑡𝐶ℎ𝑎−1. 

In this section we present the results of the analyses made of each input parameter of RothC for 

three simulated crops (tomato, forage maize and oats). Table 20 and Table 21 describe the inputs 

of crop carbon residues for each crop, the characteristics of each UHTU simulated, and the 

goodness-of-fit statistics obtained by the regression model made with the help of IBM SPSS 

statistics program. The equations represent the regression model obtained for each UHTU and 

the graphs are a representation of the results of the regression model. The graphs represent the 

change of SOC content (i.e. 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) depending on a particular parameter 

described: C, E, T, Res, SOCi, P and FMY. 

In this first case we present an analysis for LUC to Tomato. The two UHTU used have different 

values of initial SOC in order to understand the impact of crop residue carbon in two regions that 

have different behaviours for the same simulation.  
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Table 20 - Table describing the crop carbon residues values used to simulate a land use 
change to tomato, the respective characteristics of the UHTU used in the simulation and the 
goodness-of-fit statistics obtained by the regression model obtained. 

LUC TO TOMATO 

Crop Carbon Inputs 

FYM input (tC/ha): 𝟗. 𝟗 × 𝟏𝟎−𝟑 

Standard deviation FYM:  𝟑. 𝟔 × 𝟏𝟎−𝟒 

Crop Carbon Residues (tC/ha): 𝟕. 𝟔 × 𝟏𝟎−𝟏 < tC/ha < 𝟔. 𝟒 × 𝟏𝟎𝟏 

UHTU 

UHTU 1850 Non-Irrigated Arable Land UHTU 776 Vineyards  

Initial SOC = 80 (tC/ha) Initial SOC = 39 (tC/ha) 

Statistical Analysis 

𝑹𝟐 = 𝟎. 𝟗𝟔𝟐 𝑅2 = 0.955 

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑬𝒓𝒓𝒐𝒓 = 𝟏𝟐𝟒 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 = 158 

FYM – farmyard manure; UHTU – unique homogeneous territorial units; SOC – soil organic 

carbon; 𝑅2- coefficient of determination 

Starting from the linear regression model described at equation 14 we obtained Figure 16. As we 

can observe, the values found at the literature review have complete different impacts for our 

simulations. If we used a value of 64 tC/ha (Ventrela et al., 2012; Ghanem et al., 2011), we would 

obtain a positive change on SOC values of 750 tC/ha, but if used a value of 0.76 tC/ha (Alves, 

1995) we would obtain a loss of SOC of around 10 tC/ha. We can also observe that a change of 

1 tC/ha results in a SOC change of 14 tC/ha.  

 
∆𝑆𝑂𝐶1850 = 11.172 ∗ 𝑅𝑒𝑠 − 0.461 ∗ 𝑃 + 4.252 ∗ 𝐸 − 35.748 ∗ 𝑇 + 5.991 ∗ 𝐶 − 1.364

∗ 𝑆𝑂𝐶𝑖 + 40826 ∗ 𝐹𝑌𝑀 

(14) 

 

 
Figure 16- Relationship of SOC content changes for 100 year simulations to the crop carbon 
residues input. Land use change represented is from irrigated arable land to tomato. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit 

In the case of UHTU 776 described by equation 15 and Figure 16 using a value of 64 tC/ha 

(Ventrela et al., 2012; Ghanem et al., 2011) would result in a SOC change even higher than the 

last example, of 800 tC/ha. 

∆𝑆𝑂𝐶776 = 14.013 ∗ 𝑅𝑒𝑠 − 0.801 ∗ 𝑃 + 3.980 ∗ 𝐸 − 28.278 ∗ 𝑇 + 9.4 ∗ 𝐶 (15) 
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Figure 17- Relationship of SOC content changes for 100 year simulation to the crop carbon 
residues input. Land use change represented is from vineyard to tomato. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit  

For the case of a LUC to forage maize the range of carbon residues analysed is lower than the 

previous case of a LUC to tomato. 

Table 21- - Table describing the crop carbon residues values used to simulate a land use 
change to forage maize, the respective characteristics of the UHTU used in the simulation and 
the goodness-of-fit statistics obtained by the regression model obtained. 

LUT TO FORAGE MAIZE 

Common Crop Inputs 

FYM input (tC/ha): 𝟖. 𝟖 × 𝟏𝟎−𝟑 

Standard deviation FYM: 𝟑. 𝟐 × 𝟏𝟎−𝟑  

Crop Carbon Residues (tC/ha): 𝟓. 𝟐 × 𝟏𝟎−𝟏< tC/ha < 𝟒. 𝟖 × 𝟏𝟎𝟏 

Specific UHTU  

UHTU 12 Urban UHTU 1003 Pasture  

Initial SOC = 34 (tC/ha) Initial SOC = 62 (tC/ha) 

Statistical Analysis 

𝑹𝟐 = 𝟎. 𝟗𝟕𝟖 𝑅2 = 0.970 

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒆𝒓𝒓𝒐𝒓 = 𝟒𝟐 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 = 45 

FYM – farmyard manure; UHTU – unique homogeneous territorial units; SOC – soil organic 

carbon; 𝑅2- coefficient of determination 

For UHTU 1003 described by Figure 18 the results obtained verify again that a small change of 

crop carbon residues input has a major impact on the final results of SOC changes. In this case 

a change of 1 tC/ha will result in a SOC change of 12.5 tC/ha. If we used a value of crop carbon 

residue of 48 tC/ha (Berenguer et al., 2009; Vamereli et al., 2003) we would obtain an increase 

of SOC stocks of almost 600 tC/ha for both UHTU 1003 described at Figure 18 and UHTU 12 

described at Figure 19. 
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Figure 18 - Relationship of SOC content changes for 100-year simulation to the crop carbon 
residues input. Land use change represented is from pasture to forage maize. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit; LUC – land use change  
 

 

 
Figure 19- Relationship of SOC content changes for 100-year simulation to the crop carbon 

residues input. Land use change represented is from pasture to forage maize. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit; LUC – land use change 

For the next cases, instead of analysing the crop carbon residues, we analyse the other input 

parameters of RothC, i.e., pan evaporation, precipitation, temperature, farmyard manure, SOC 

initial value and clay fraction. In the first two cases we are in the presence of two parameters that 

are the opposite of the other. For pan evaporation, we can see that the higher the values, more 

SOC gains will be obtain. On the other hand, for precipitation, a lower value for precipitation will 

result in a higher gain of SOC. 
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Figure 20- Representation of the effect of the parameters of Pan Evaporation (image on the left) 
and precipitation (image on the right) to the SOC stocks for a case of LUC from broad-leaved 
forest to oat – UHTU 1752. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit; LUC – land use change 

Next, for the case of clay fraction and temperature we can see that these parameters have a 

similar effect to SOC results, where the higher each of the inputs will enable a higher gain of 

SOC. 

 
Figure 21- Representation of the effect of the parameters of clay fraction (image on the left) and 
temperature (image on the right) to the SOC stocks for a case of LUC from broad-leaved forest 
to oat – UHTU 1752. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit; LUC – land use change  

For the initial SOC input parameter, we can observe that, the higher the value of initial SOC, the 

lowest gain on SOC will be obtained. On the other hand, farmyard manure has the opposite effect, 

where a higher value will result in a higher SOC gain. 
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Figure 22 - Representation of the effect of the parameters of initial SOC input (image on the left) 
and manure (image on the right) to the SOC stocks for a case of LUC from broad-leaved forest 
to oat – UHTU 1752. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit; LUC – land use change  

7.3.2 Monte Carlo Simulations Sensitivity Analysis 

First, in order to understand if 100 iterations for simulations are enough to obtain a Monte Carlo 

simulation, we ran RothC model for 100 iterations, 200 iterations and 300 iterations. The 

simulations are for a LUC to wheat. The results are described at Table 22. We can see that, even 

if we increase the number of iterations, the values do not change significantly. Also, there is no 

trend visible, i.e., we cannot say that if we run more iterations, all the results will approximate to 

the best estimate case. 

Table 22- SOC change mean values for best case estimate, 100 iterations, 200 iterations and 
300 iterations simulations. Land use change to wheat. 

SOC changes 
tC/ha 

Best 
Estimate 

Case 
100 iterations 200 iterations 300 iterations 

Artificial 
Surfaces 

-1.39 -6.28 -6.18 -6.08 

Non-Irrigated 
Arable Land 

-3.60 -7.90 -7.84 -7.91 

Pastures -9.50 -15.28 -15.26 -15.22 

Wetlands -12.69 -16.39 -16.10 -15.58 

Permanently 
Irrigated Land 

0.21 -3.65 -3.55 -3.48 

Rice -0.85 -4.51 -4.30 -4.37 

Vineyards 2.75 -2.25 -2.20 -2.40 

Fruit trees and 
berry 

plantations 
2.75 -2.13 -2.25 -2.35 

Olive Groves -0.06 -4.51 -4.45 -4.59 

Agro-forestry 
areas 

-6.67 -10.93 -10.93 -10.99 

Broad-leaved 
forest 

-13.00 -17.31 -17.17 -17.29 

Coniferous 
forest 

-16.40 -20.95 -20.45 -20.57 
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SOC changes 
tC/ha 

Best 
Estimate 

Case 
100 iterations 200 iterations 300 iterations 

Mixed Forest -17.31 -21.11 -20.95 -20.96 

Forest -13.90 -18.41 -18.20 -18.21 

SOC – soil organic carbon 

For this next approach, we made different simulations, with a different number of iterations, in 

order to understand the distribution of the parameters obtained by the random values equation 

given to Matlab. The parameter here evaluated is the pan evaporation for January, for UHTU 2. 

The mean value given was 45.8 mm and the standard deviation was 45.7 mm. 

The following histograms describe the distribution of the pan evaporation values for January, for 

100 iterations and 1000 iterations. For these simulations, a code line prevented the Matlab 

random values generate negative values.  

Figure 23 shows that the generated values for pan evaporation do not have a regular normal 

distribution. The values obtained are over estimated. This was due to the large standard deviation, 

which enabled the selection of very large pan evaporation. 

 
Figure 23- Histogram describing the distribution of pan evaporation parameter values, 
generated from a random numbers code line on Matlab, for a normal distribution, for 100 
iteration simulation. 

Figure 24 shows that again the distribution is over estimated and that the values nearer the mean 

value given are over estimated too, from a range since 30 to 75 mm. 
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Figure 24- Histogram describing the distribution of pan evaporation parameter values, 
generated from a random numbers code line on Matlab, for a normal distribution, for 1000 
iteration simulation. 

Figure 24 shows that the distribution of values will not improve with more iterations for each 

simulation and there is no trend defined as the number of iterations rise. The value that 

approximates the mean value given for this parameter is for the case of 100 simulations. 

 
Figure 25 - Mean pan evaporation values generated on the random number code line of Matlab, 
for a normal distribution, for simulations with different number of iterations. 

For the last analysis, we reduced the deviation standards, for all the parameters that had a normal 

distribution (i.e. pan evaporation, temperature, precipitation, initial SOC content and initial clay 

fraction). We ran three different times the simulations, each time with different standard deviation 

values. First, we reduced by half the standard deviation, secondly we reduced by one third of the 

original standard deviations, and last we divided by 1000 the original standard deviations. Table 

22 presents the SOC changes, i.e. 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1 for a LUC to wheat.  

The first and second column presents the values already obtained before for the best estimate 

case and the 100-iteration simulation, the latter with the original standard deviations. The three 

following columns represent the results obtained with the reduced standard deviations. 
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The results depicted in Table 22 show that lower standard deviations will consequently 

approximate the SOC changes values obtained from RothC simulations to the best case estimate 

results. This assessment provides validation of the Matlab program and shows that the 

differences between best estimate scenarios and iterative results was not the result of a 

computational problem but rather of poor quality input data. 

The first results correspond to the best case estimate, i.e., no standard deviation is used. Then 
the second results are for the original standard deviations obtained from the calculation of the 
parameters. The last three results correspond to the simulations where we diminish the standard 
deviation values. SOC – soil organic carbon. 

7.4 Discussion 

7.4.1 Parameters Sensitivity 

For the case of pasture, the mean value of SOC according to LUCAS topsoil data (Brogniez et 

al., 2015) and the CLC classification (2006) for permanent pastures land is 65 tC/ha and 15.73 

clay fraction. This means that, UHTU 3 that has an initial value of 43 tC/ha, will presumably 

increase its SOC along 100-years. This does not happen in the condition where Crop Carbon 

Residue is 0.8 tC/ha, that is the only value obtained on the literature review for pasture. For this 

specific case, to start increasing SOC the monthly crop carbon residue needed to be higher than 

1.22 tC/ha. It is expected then, that the values obtained for our simulations for LUC to pasture will 

be, overall, below expected. 

Tomato crops can be included in the permanently irrigated land classes, according to the 

classification of the CLC (2006). The mean values of the current initial SOC of permanently 

irrigated land (Brogniez et al., 2015) is 43 tC/ha and a mean of clay fraction of 17. UHTU 1850 

that has an initial SOC value of 80 tC/ha, should have its SOC values decreased along the years. 

For this to happen, its crop carbon residue should be lower than 2.77 tC/ha. If we used a value 
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Artificial Surfaces -1.39 -6.36 -4.15 -3.46 -1.45 

Non-Irrigated Arable Land -3.59 -7.89 -6.09 -5.44 -3.65 

Pastures -9.50 -15.20 -13.03 -12.06 -9.56 

Wetlands -12.69 -15.99 -13.26 -12.95 -12.73 

Permanently Irrigated Land 0.20 -3.68 -2.05 -1.42 0.15 

Rice -0.84 -4.32 -2.73 -2.33 -0.90 

Vineyards 2.75 -2.28 -0.12 0.77 2.69 

Fruit trees and berry 
plantations 

2.74 -2.28 0.05 0.74 2.69 

Olive Groves -0.06 -4.57 -2.51 -1.87 -0.11 

Agro-forestry areas -6.67 -10.90 -9.23 -8.64 -6.73 

Broad-leaved forest -13.00 -17.39 -15.47 -14.80 -13.06 

Coniferous forest -16.39 -20.36 -18.82 -18.38 -16.45 

Mixed Forest -17.31 -20.94 -19.00 -18.61 -17.36 

Forest -13.89 -18.53 -16.25 -15.78 -13.95 

Table 23 – Results obtained through the simulations of RothC for five different usages of the 
standard deviation.  
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similar to the one obtained using the harvest index ratios recommended by Ventrela et al. (2012) 

and a shoot-to-root ratio recommended by Ghanem et al. (2011), we would have obtained an 

increase of SOC of almost 750 tC/ha in 100-years. Also, analysing UHTU 1062, we would obtain 

an increase even higher, around 850 tC/ha. Also, any value above 2.77 tC/ha is inaccurate. This 

value, for UHTU 1850 means that SOC will remain steady in the values of 80 tC/ha, although this 

value is twice higher the one expected. 

Forage maize can also be included in the permanently irrigated land classes (CLC, 2006). For 

this particular crop, it is expected that the crop carbon residue taken into account, will be a lower 

value because this type of crop is harvested early and the harvest is complete (no residues are 

left on the field). For UHTU 1003, it is likely that SOC decreases after conversion to forage maize. 

For this to happen, crop carbon residues need to be less than 1.58 tC/ha. In the case of UHTU 

12, it is expected for the values to remain constant, thereby values around 1.59 tC/ha would be 

considered. The only value closer to this estimative is 1 tC/ha, which is recommended by Knaber 

(2002). For instance, a value such as the one recommended by Berenguer et al. (2009) and 

Vamereli et al. (2003) of 21 tC/ha would lead to an increase of more than 200 tC/ha for the two 

regions analysed. 

Oats can be aggregated into the non-irrigated arable land class (CLC, 2006). The mean value of 

SOC content is 50 tC/ha.  In the case of UHTU 2 it is expected for the values to remain constant. 

In order for this value not to decrease, the crop carbon residue would have to be 1.62 tC/ha. 

UHTU 1752 has a forest LU. The most probable for this region is that the SOC content decreases 

when changing its LU to oat. For this to happened the values of crop carbon residues need to be 

lower than 3 tC/ha. In order to choose a value lower than 3 tC/ha, the only value gathered in the 

literature review is 1.354 tC/ha proposed by ISPRA (2016).   

Overall, the message of this analysis is that small changes in carbon residues result in over-

magnified consequences for SOC loss/accumulation. As we can see in Table 27 of the Appendix, 

the values obtained in our literature review have different magnitudes, which makes the decisions 

of SOC modellers critical. For instance, for shrublands the values proposed are 0.68 tC/ha and 

4.96 tC/ha. If used alternatively, they will result in completely different SOC dynamic profiles.  

An increase in clay fraction, initial SOC, crop carbon residues and manure result in larger SOC 

gains. Pan evaporation and precipitation are always positive. In the case of pan evaporation, 

there is a threshold for SOC gains and losses (around 30 mm per month). Values such this are 

not frequent and happen normally in the months of January and February (INE). In the case of 

precipitation, it is possible, starting from a value of 880 mm per month, to start depleting SOC 

stocks, but such precipitation does not occur in the Alentejo region. At most, precipitation in one 

month is approximately 200 mm. Monthly temperature increases, similarly to pan evaporation, 

lead to higher SOC gains. A higher value of initial SOC implies that the probability for SOC content 

increases is lower. Farmyard manure has a limited role in determining SOC increases. It would 

take a higher value of manure than, for example, crop residues, to enable a similar increase in 

SOC stocks.  
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7.4.2 Monte Carlo Simulations 

The results obtained and shown in Table 22 demonstrate that increasing the number of iterations 

does not necessarily approximate the average results of all iterations to the best estimate results, 

i.e. results obtained using the average of each parameter. When there is more than one option 

for carbon in crop residues, a parameter with a uniform probability distribution, the two 

approaches were not expected to lead to the same results necessarily. However, when there is 

only one estimate available for carbon in residues, since all other variables are normally 

distributed, the two approaches should result in approximately the same SOC increase/decrease. 

Our analysis shows that the mismatch is not due to a low number of iterations (long time to 

converge). As we can see in Figure 23, Figure 24 and Figure 25, the probability distributions for 

pan evaporation values will not get more accurate while increasing the number of iterations. Also, 

in Figure 25, the best case that approximates the mean values obtained for pan evaporation is 

the case where we used less iterations (i.e. 100 iterations).  

The results of the two approaches only converge if the standard deviation of input variables 

decreases. This shows that the root of the problem with our Monte Carlo simulations lies on the 

high values of standard deviation given to RothC, which in this case are due to low quality data 

(insufficient number of years and lack of meteorological stations, for example).  

7.5 Conclusion 

This analysis of the crop carbon residues input explained the main conclusions of Chapter 6 and 

the magnitude of the results obtained. We conclude that there are critical data gaps for this 

parameter. We obtained disparate estimates from the literature review conducted. For the 

generalization of the procedure established in this dissertation, more and better quantifications of 

the carbon content of plant residues are essential. This is a limitation that we were unable to 

overcome in this work, so as a tentative solution we opted to limit the values used to the ones that 

we believe to be more accurate or credible, considering expected results. This is a strong 

limitation for the application of the analysis in calculations of CFs (Chapter 9), which should 

therefore only be considered demonstrative. 

For the Monte Carlo simulations, we can conclude after our analysis that data limitations for other 

variables (namely the climate variables) also prevent us from establishing the uncertainty of 

results. In order to overcome the problems, in the future the input values given to RothC should 

be recalculated, or obtained from better quality sources with lower deviation standards. Also, 

another solution for the parameters of initial SOC and clay fraction would be to desegregate the 

UHTUs even more, i.e., have more UHTUs for the same area. This approach would not result for 

the climate data because these data were obtained using 12 meteorological stations, which were 

the only freely available stations with data for several years in the study area. Due to these 

limitations, we do not present an uncertainty analysis for the CFs in Chapter 9.
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8. Estimation of SOC depletion due to land use with RothC - Curve 
Fitting Equations 

8.1 Summary 

As explained in the previous section, a Matlab implementation of RothC was one of the outcomes 

of this thesis in order to fasten calculation time and perform Monte Carlo simulations on input 

parameters. For the purposes of this dissertation, we ran the modified RothC model for 100 

iterations for all the UHTU. The model gives an output of SOC values for each simulated year. 

Graphically, this represents a curve that can be increasing or decreasing along with the time. This 

curve is a complex shape, but it can be approximated using simpler curves. Considering that the 

calculation of CFs shown in the next section requires the calculation of integrals, simplifying the 

shape of the curve was useful in our work. In this section, in order to calculate the CFs, found the 

best fit to each SOC curve. 

8.2 Method 

To find the equations that best fit each curve depicting the changes of SOC during 100 years, we 

made a routine in Matlab that allows, with the help of the Curve Fitting Application, to estimate 

the best linear regression fit to each set of data. Matlab is able to adjust different equations. We 

tried every type of fit with no more than three coefficients to avoid statistical over-specification. 

The different fits available in the Matlab Curve Fitting Application are described by Table 24. 

Table 24- Curve fitting equations available in the Matlab Curve Fitting Application, with three or 
less coefficients. 

Curve Fit General Formula 

Exponential (1st degree) 𝑓(𝑥) = 𝑎 𝑒𝑥𝑝(𝑏𝑥)              (16) 

Fourier (1st degree) 𝑓(𝑥) = 𝑎 + 𝑏𝑐𝑜𝑠(𝑥𝑤) + 𝑐𝑠𝑒𝑛(𝑥𝑤)   (17) 

Gaussian (1st degree) 𝑓(𝑥) = 𝑎𝑒𝑥𝑝
(−(

𝑥−𝑏

𝑐
)

2
)
            (18) 

Polynomial (1st degree) 𝑓(𝑥) = 𝑝1𝑥 + 𝑝2                (19) 

Polynomial (2nd degree) 𝑓(𝑥) = 𝑝1𝑥2 +  𝑝2𝑥 + 𝑝3          (20) 

Power (1st degree) 𝑓(𝑥) = 𝑎 ∗ 𝑥𝑏                  (21) 

Power (2nd degree) 𝑓(𝑥) = 𝑎 ∗ 𝑥𝑏 + 𝑐               (22) 

Rational (1st denominator degree and zero 

numerator degree) 

𝑓(𝑥) =  
𝑝1

𝑞1+𝑥
                   (23) 

Rational (1st denominator degree and 1st  

numerator degree) 

 𝑓(𝑥) =  
𝑝1𝑥+ 𝑝2

𝑞1+𝑥
                  (24) 

Sum of Sine (1st degree) 𝑓(𝑥) = 𝑎𝑠𝑒𝑛(𝑏𝑥 + 𝑐)          (25) 

Weibul 𝑓(𝑥) = 𝑎𝑏𝑥(𝑏−1)𝑒𝑥𝑝(−𝑎𝑥𝑏)     (26) 

 



63 

 

We analysed the next goodness-of-fit statistics also obtained in the Matlab Curve Fitting 

Application: sum of squares due to error (SSE), coefficient of determination (𝑅2), degrees of 

freedom, adjusted 𝑅2 and root mean squared error (RMSE). The SSE is used to calculate the 

total deviation between the observed values in the data set against the predicted values obtained 

from the fit. A lower value of SSE indicates that the fit presents a lower random error. The 𝑅2 

value may be defined as the square of the correlation between the observed values in the data 

set against the predicted values. It is a value between 0 and 1 and it is used to understand the 

variation of the data where 𝑅2 closer to 1 represents a better fit. The adjusted 𝑅2 takes into 

account the degrees of freedom. The degree of freedom is a statistics defined by the number of 

sample size minus the number of coefficients estimated from the predicted values model. RMSE 

represents the standard error of the fit. A value closer to 0 represents a better fit. Also, in order to 

evaluate the goodness of the fits, we made a residual analysis. The residuals obtained from a fit 

model are defined by the difference of the data given to the model against the predicted values 

of the fit. The objective of plotting the residues, is to analyse if the values fitted by the model are 

randomly distributed, i.e. if there is no trend above or below of the observed values and no 

correlation with the dependent variable (Rawlings et al., 1998). 

8.3 Results 

We adjusted each dynamic SOC curve of SOC separately for each UHTU and for each simulation.  

We chose the best three fits to present results in this section: Polynomial 2nd degree, Exponential 

1st degree and Power 2nd degree. All other options adjusted worse to the data. For each fit we 

present results: in Table 25 for a decreasing curve and Table 25 for an increasing curve. 

The first curve evaluated was the decreasing curve. The goodness-of-fit results are presented in 

Table 24. Power 2nd degree has better fit than others, even though every fit has a 𝑅2 approximated 

to 1. Polynomial 2nd degree presents the highest value of SSE and RMSE. 

Table 25- Evaluation on the best fit for an increasing curve obtained in RothC model for UHTU 
106. 

Curve Fitting Type 
UHTU 106 

Polynomial 2nd 
degree 

Exponential 1st 
degree 

Power 2nd degree 

General model 𝑓(𝑥) = 𝑝1 ∗ 𝑥2 + 𝑝2
∗ 𝑥
+ 𝑝3 

𝑓(𝑥) = 𝑎 ∗ exp (𝑏 ∗ 𝑥) 𝑓(𝑥) = 𝑎 ∗ 𝑥𝑏 + 𝑐 

SSE 29.22 0.65 0.55 

𝑹𝟐 0.9915 0.9914 0.9998 

DFE 97 99 97 

Adj 𝑹𝟐 0.9913 0.9913 0.9998 

RMSE 0.54 0.081 0.075 

UHTU – unique homogeneous territorial unit; 𝑅2- coefficient of determination; SSE - sum of 

squares due to error; adjusted 𝑅2 - degrees of freedom; RMSE - root mean squared error 

Figure 25 represents the fit obtained for a Power 2nd degree curve fitting type, where the black 

points are the sampled values, and the blue line is the curve obtained by the fit. We can see that, 

even though the blue line adjusts well to the data, the distribution with time of the difference 

between predicted SOC data by the model and RothC model results (Figure 27) has a distinct 

pattern. The fitted curve over-estimates and under-estimates the sampled values in diferent 
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regions of the graph. Most importantly, after approximately 90 years, the fitted model 

underestimates RothC results. At the Appendix we present in Figure 40 and Figure 42 the curve 

fit and residuals plot for exponential 1st degree and polynomial 2nd degree fit, both for decreasing 

curves. 

 

Figure 26- UHTU 106 SOC values through 100 years (points) and respective curve fit (blue line) 
obtained by 2nd degree Power Equation. 

 

Figure 27- UHTU 106 residuals obtained in the curve fitting described in Figure 26. 

In the case of an increasing curve, we can see in Table 26 that all the fits also have high 𝑅2. 

Exponential fit has the highest values of SSE and RMSE. Also Polynomial fit has a high SSE 

value. 

Table 26- Evaluation on the best fit for an increasing curve obtained in RothC model for UHTU 1. 

Curve Fitting Type 
UHTU 1 

Polynomial 2nd 
degree 

Exponential 1st 
degree 

Power 2nd degree 

General model 𝑓(𝑥) = 𝑝1 ∗ 𝑥2 + 𝑝2 ∗ 𝑥
+ 𝑝3 

𝑓(𝑥) = 𝑎 ∗ exp (𝑏 ∗ 𝑥) 𝑓(𝑥) = 𝑎 ∗ 𝑥𝑏 + 𝑐 

SSE 3.31 29.92 0.39 

𝑹𝟐 0.9930 0.9370 0.9992 

DFE 97 98 97 

Adj 𝑹𝟐 0.9929 0.9364 0.9991 

RMSE 0.18 0.55 0.063 

UHTU – unique homogeneous territorial unit; 𝑅2- coefficient of determination; SSE - sum of 

squares due to error; adjusted 𝑅2 - degrees of freedom; RMSE - root mean squared error 

The curve fit obtained for Power 2nd degree fit of an increasing curve is shown in Figure 28 and 

Figure 29 shows us that, even though there is good apparent fit, the temporal distribution of 
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residuals is not random. We can see that the curve is underestimated at the beginning and ending, 

and overestimated in the middle. The curve fits and residuals plot for the Exponential and 

Polynomial fits for an increasing curve are depicted in the Appendix in Figure 40 and Figure 41 

respectively. 

 
Figure 28- UHTU 1 SOC values through 100 years (points) and respective curve fit (blue line) 
obtained by 2nd degree Power Equation. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit  

 

 
Figure 29- UHTU 1 residuals obtained in the curve fitting described in Figure 28. 

SOC – soil organic carbon; UHTU – unique homogeneous territorial unit  

8.4 Discussion 

The Curve Fitting Application on Matlab has ten different models with three or less coefficients. 

After trying all of the fit models in a primary analysis of the fit graphs, we concluded that the three 

best fits were: Polynomial 2nd degree, Exponential 1st degree and Power 2nd degree. Looking at 

the results presented above in section 8.3 we can observe that 𝑅2is insufficient to choose the 

best fit. On its own, 𝑅2 shows that the three fits are accurate, but when analysing for instance the 

SSE, we can see that Polynomial is slightly better than the Exponential and Power fits. The curves 

analysed also have different goodness of fit statistics depending on their orientation (i.e. 

increasing or decreasing curves). Even though the Power fit was a better option (i.e. lower SSE 

and RMSE, higher 𝑅2 and adjusted 𝑅2), Exponential fit behaves almost has good as Power fit. 

This last comparison is not true when assessing an increasing curve. The Power model fits the 

SOC curve better in both cases (increasing and decreasing) according to the observed values. 

After the goodness-of-fit analysis, we also assessed the residuals plot for the three fits. Residuals 

are never randomly distributed as a function of time. There are biases towards under or 

overestimating the results of the model for earlier or later time. Consequently, no single curve is 

a fully accurate representation of the results. Overall, the Power fit presents lower residues than 

the other fits, even though under estimating and over estimating the results in some regions of 

the curves. 
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8.5 Conclusions 

We can conclude that a simple analysis of 𝑅2 and adjusted 𝑅2 is not enough to evaluate which fit 

is the most accurate. It is important to take into account a wider analysis with different statistics 

to make conclusions. Even though for all the cases the 𝑅2 values are approximately equal to 1, 

we can see that some models do not fit the data as well, presenting high residue values in the 

cases of Polynomial and Exponential fits.  

Also, even though this Power fit is not perfectly fitted to the observed models, we can conclude 

that it is a good approximation for our intended purposes. As we are calculating CFs in the next 

Chapter that are the accumulated SOC gain/loss, the regions of the curves that under and 

overestimate the results of RothC cancel out. We need to take into account that we are trying to 

fit, in one equation with no more than three coefficients, the behaviour of a complex non-linear 

model (RothC), thereby the approximations to one equation cannot ever be 100% accurate. We 

also concluded that even if we chose a fit with more than three coefficients, according to the 

results, the 𝑅2 value will not ever be better more that 1% of what already is. 
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9. Calculation of Characterization Factors 

9.1 Summary 

After running RothC simulations and obtaining an equation that describes the behaviour of each 

curve, in this final section, we present the method of calculation of the CFs using the curve that 

fits RothC results best. The model described in this dissertation addresses both land 

transformation CFs and land occupation CFs. As already explained, to obtain the dynamic curves 

of SOC change along 100 years, we used RothC to simulate agricultural, shrubland, forest and 

grassland LU. We model the following biotic LU: 13 agricultural LU classes, 5 forest classes, 

shrubland and grassland, starting from an initial LU1 that can be each one of the reclassified CLC 

(as described in Table 6Table 6). 

9.2 Method 

The CFs determine the accumulated effect of dynamic changes in SOC due to LUC. In order to 

measure these impacts, we chose two different reference states to evaluate: the current LU before 

transformation (LU1) and PNV. The first choice of reference state is a historical baseline while 

the second is a semi-natural baseline. Also, for each reference state we can encounter two 

different situations: when LU1 is equal to LU2, and when LU1 is different than LU2. These four 

situations are described in Figure 30, Figure 31, Figure 32 and Figure 33, where LU1 is the current 

LU, LU2 is the next (intended) LU after the transformation from LU1, PNV is the potential natural 

vegetation and 𝑆𝑂𝐶𝐼𝑁𝐼 is the initial value (year 1) of SOC in a given LU1. For example, a 

transformation CF will measure the total depletion of SOC in a “transformation to rainfed barley” 

in a given UTHU when LU2 is rainfed barley, LU1 is the current LU in that UHTU, and PNV is the 

natural vegetation in the same region. The PNV of each UHTU was obtained by the overlapping 

of the UHTU regions with a map of historical estimations in global land cover (Ramankutty and 

Foley, 1999). Occupation CFs are obtained as the difference between the final SOC value of the 

reference state minus the final SOC value of LU2. In the case of the transformation CF, this is 

defined as the difference between SOC stock of the change from 𝐿𝑈𝑃𝑁𝑉 to LU2 minus the 

difference between SOC stocks from the change from 𝐿𝑈𝑃𝑁𝑉 to LU1. 

The framework presented here is based on Koellner et al. (2013a) with slight modifications. While 

Koellner et al. (2013a) compare static situations, our scenario-based model required the 

adjustments described next. 

9.2.1 LU1 as reference state 

In the first case, where LU1 is equal to LU2, there is no LUC, and SOC only changes due to the 

influence of soil, climate and management parameters. The occupation CF will be the last value 

of SOC for LU1 minus the last value of SOC for LU2. The transformation CF is defined as the 

area below the curve of SOC for LU1 minus the area of SOC for LU2. In this case, both of 

transformation and occupation CFs are zero. Equations (27) to (35) for the next four cases 

describe the CFs of occupation (CFoccupation) and the CFs of transformation (CFtransf). Figure 
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30 represents the SOC changes when LU1 is equal to LU2. Equations (27) and (28) describe how 

the CFs are obtained. 

 

Figure 30- Schematic representation of the calculation of CF when LU1 is equal to LU2 and LU1 
is the reference state. 

SOC – soil organic carbon  

 𝐶𝐹𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑂𝐶100_𝐿𝑈1 − 𝑆𝑂𝐶100𝐿𝑈2
= 0 (27) 

 
𝐶𝐹𝑡𝑟𝑎𝑛𝑠𝑓 =  ∫ 𝑆𝑂𝐶𝐿𝑈1 𝑑𝑥 − ∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑥 = 0

100

1

100

1

 
(28) 

In this second case, LU1 and LU2 are different and as such there is LUC from LU1 to LU2. The 

occupation CF is the equilibrium value of SOC (assumed to be SOC after 100 years) for LU1 

minus the equilibrium value of SOC for LU2 while the transformation CF is going to be the area 

below the curve of SOC for LU1 minus the area of SOC for LU2. The CFs are represented in 

Figure 31 and are obtained according to equations (29) and (30). 

 
Figure 31- Schematic representation of the calculation of CF when LU1 is different than LU2 
and LU1 is the reference state. 

SOC – soil organic carbon  

 𝐶𝐹𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑂𝐶100_𝐿𝑈1 − 𝑆𝑂𝐶100_𝐿𝑈2 
 

(29) 

 
𝐶𝐹𝑡𝑟𝑎𝑛𝑠𝑓 =  ∫ 𝑆𝑂𝐶𝐿𝑈1 𝑑𝑡 −  ∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡.

100

1

100

1

 

 

(30) 

9.2.2 PNV as reference state 

In this third situation, there is no LUC because LU1 is equal to LU2. The occupation CF is going 

to be the difference of the last SOC for the PNV SOC curve minus the last value of SOC for LU2. 

The transformation CF is obtained through the difference of the areas below the SOC curve for 

LU1 against the SOC curve of PNV minus the difference of areas for SOC curve of LU2 against 
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the SOC curve area of PNV. Thereby, as it is possible to see by equations (31) and (32) the 

transformation CF is zero. Occupation CF is not zero unlike the first case described above.  

 

 
Figure 32 - Schematic representation of the calculation of CF when LU1 is equal to LU2 and 
PNV is the reference state. 

SOC – soil organic carbon; PNV – potential natural vegetation 

 𝐶𝐹𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑂𝐶100_𝑃𝑁𝑉 − 𝑆𝑂𝐶100_𝐿𝑈2 (31) 

 

𝐶𝐹𝑡𝑟𝑎𝑛𝑠𝑓 = (∫ 𝑆𝑂𝐶𝐿𝑈1 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝑃𝑁𝑉  𝑑𝑡 )
100

1

100

1

− ∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝑃𝑁𝑉 𝑑𝑡
100

1

100

1

= 0. 
 

(32) 

 
The last case is the most complex and it involves more than a 100-year simulation. While all other 

cases are a direct adaptation of Koellner et al. (2013), this case is a departure because the 

authors of the reference model consider instantaneous transformations while, in the case of our 

approach, even when there is no LUC there are still SOC changes. The framework devised here 

was a tentative approach of dealing with this issue. 

First, the line in blue in Figure 33 represents no LUC but just the SOC changes over 100 years if 

LU1 remained LU1. The green line represents the change of LU1 to PNV, for a simulation of 200 

years.  

Finally, the line in orange is divided in two parts. The first part (from year 1 to year 100) is the 

change from LU1 to LU2. The second part (from year 101 to 200) is the change from LU2 to PNV. 

The occupation CF will be obtained simply by the difference of the last SOC value for PNV at year 

200 minus the last SOC value for LU2 at year 100. 

The transformation CF is calculated using the area between the SOC curve for PNV for years 100 

to 200 and the SOC curve of LU2 for years 100 to 200 plus the area between the SOC curve for 

PNV for years 1 to 100 and the SOC curve of LU2 for years 1 to 100. This area is then subtracted 

from the area obtained by summing the area between the curve of SOC of PNV for years 1 to 100 

and the of SOC of LU2 for years 1 to 100 plus the area between SOC curve of LU2 for year 1 to 

100 and SOC curve of LU1 for year 1 to 100. Equations 33, 34 and 35 show the calculation 

necessary for the CFs. 
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Figure 33 - Schematic representation of the calculation of CF when LU1 is different than LU2 
and PNV is the reference state. 

SOC – soil organic carbon; PNV – potential natural vegetation 

 

𝐶𝐹𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑂𝐶200_𝑃𝑁𝑉 − 𝑆𝑂𝐶100_𝐿𝑈2 
 

(33) 

𝐶𝐹𝑡𝑟𝑎𝑛𝑠𝑓 = (∫ 𝑆𝑂𝐶𝑃𝑁𝑉 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡 )
100

1

100

1

+ (∫ 𝑆𝑂𝐶𝑃𝑁𝑉 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡 )
200

101

200

101

  

− ((∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝐿𝑈1 𝑑𝑡 )
100

1

100

1

+ (∫ 𝑆𝑂𝐶𝑃𝑁𝑉 𝑑𝑡 −
100

1

∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡)
100

1

) 

(34) 

Equation (35) is equivalent to: 

𝐶𝐹𝑡𝑟𝑎𝑛𝑠𝑓 = (∫ 𝑆𝑂𝐶𝑃𝑁𝑉 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡 )
200

101

200

101

−  (∫ 𝑆𝑂𝐶𝐿𝑈2 𝑑𝑡 − ∫ 𝑆𝑂𝐶𝐿𝑈1 𝑑𝑡 ).
100

1

100

1

 
(35) 

9.2.3 Undefined integral for Power 2nd degree fit 

As described at section 8, Power 2nd degree fit is the curve fitting type chosen to adjust the results 

of our simulations. The undefined integral for this equation fit is  

∫ 𝑓(𝑡) = (𝑡 (
𝑎𝑡𝑏

𝑏 + 1
+ 𝑐) +𝑐𝑡𝑒)|

𝑡2

𝑡1

 

=  (𝑡2  (
𝑎𝑡2

𝑏

𝑏 + 1
+ 𝑐) + 𝑐𝑡𝑒) − (𝑡1  (

𝑎𝑡1
𝑏

𝑏 + 1
+ 𝑐) + 𝑐𝑡𝑒). 

 

(36) 

 

The integral defined from t = 1 to 100 is 

∫ (𝑎𝑥𝑏 + 𝑐) 𝑑𝑡 =  
𝑎(100𝑏+1 − 1)

𝑏 + 1
+ 99𝑐.

100

1

 
(37) 

Equation (37) was the basis for implementation of the calculation procedure of CFs. We 

developed a Matlab routine, which was appended to the RothC implementation, to calculate all 

CFs for each UHTU. All results presented here are CFs that are defined as a depletion of SOC. 

This means that a positive CF represents a loss of SOC. 

9.2.4 Comparison with other models 

We compared the results of the approach in this dissertation with three different models for the 

calculation of CFs. One is for the occupation CFs and the last two are for transformation CFs. 

The first map was obtained from the method proposed by Morais et al. (2016b). The other two 
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methods for transformation CFs are respectively based on Milà i Canals et al. (2007) and Brandão 

and Milà i Canals (2013) and were retrieved from Teixeira et al. (2016). All three are proxy-based 

models that use SOC depletion as the indicator for LU impact assessment. The main distinctions 

are the regeneration times assumed. Milà i Canals et al. (2007) uses a constant regeneration time 

of 50 years for the LUC to agriculture, while Brandão and Milà i Canals (2013) and Morais et al. 

(2016b) use a constant second regeneration time (20 years for LUC between LU2 and PNV) and 

the first regeneration time (conversion from LU1 to PNV) is adjusted according to the second 

assuming constant regeneration rates. 

9.3 Results 

The full results obtained for the CFs for each LU assessed are available at: 

https://fenix.tecnico.ulisboa.pt/homepage/ist172997/supplementary-materials. In this section we 

present only an analysis of the results obtained for tomato  and compare them to the CFs obtained 

using proxy-based models. The model for conversion to tomato provides good results and as 

such was selected for demonstration of CFs. 

9.3.1 Characterisation Factors Results 

Figure 34 shows the spatial distribution of transformation CFs to tomato for the case where the 

reference state is LU1. The range of values goes from approximately -1 ktC/ha to 5 ktC/ha. These 

CFs depend on the present LU before conversion. Conversion from LU similar to tomato 

generates less aggregated impacts over 100 years (left bound), and conversion from forest uses 

generates higher impacts (higher bound). Higher values CFs are then found on the north of 

Alentejo. 

 

Figure 34- Transformation characterization factors for a land use change to Tomato crop (tC/ha) 
for LU1 as a reference state. 

Figure 35 shows the spatial distribution of the transformation CFs for the case where PNV is the 

reference state. The range of CFs is higher than in Figure 34, going from approximately -2 ktC/ha 

to almost 10 ktC/ha. This is due to the fact that the change is compared with a semi-natural state 

https://fenix.tecnico.ulisboa.pt/homepage/ist172997/supplementary-materials
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and aggregated over a longer period. Once again it is possible to see that at north of Alentejo we 

can find the highest CFs, consequence of a conversion from forest uses to tomato crops. 

 

 

Figure 35- Transformation characterization factors for a land use change to Tomato crop (tC/ha) 
for PNV as a reference state. 

Figure 36 depicts the distribution throughout Alentejo of occupation CFs, for LUC to tomato with 

PNV as a reference state. We can see a pattern with larger areas with lower values, i.e. with 

larger gains of SOC stocks (i.e. lower CF values), in blue zones east of the region. The other 

zones of the region present higher gains of SOC (i.e. higher CF values), where south of Alentejo 

we have the highest values of CF. 

 

Figure 36 – Occupation characterization factors for a land use change to Tomato crop (tC/ha 
year) for PNV as a reference state. 
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9.3.2 Comparison of CFs with other models 

The map in Figure 37 depicts the distribution of occupation CFs obtained by Morais et al. (2016b). 

This layer for Alentejo was retrieved from a European map of CFs. Morais et al. (2016b) do not 

disaggregate agricultural LUs. As such, the map depicts LUC to agriculture (the class that would 

be used to assign a land use CF to transformation to tomato) with PNV as a reference state. Their 

approach is not as regionalized as the approach suggested in this dissertation, having only 4 

levels of desegregation for this region. There is no gain of SOC (i.e. no negative CFs) after 

occupation, only losses. The method for calculation of occupation CFs is not dependent of any 

regeneration time, and assumes that SOC stocks are constant.  

 

Figure 37 – Occupation characterization factors for a land use change to agriculture crop 
(tC/ha.year) for PNV as a reference state, based on the methodology proposed by Morais et al. 
(2016b). 

Figure 38 shows the distribution of transformation CFs obtained using the method of Morais et al. 

(2016b). It depicts LUC to agriculture also, with PNV as a reference state. Again in this case, 

there is no negative CF, i.e., there are only gains or null changes in SOC. It would be expected 

that for some regions (e.g. urban areas) we encounter a gain of SOC during the occupation phase. 

The comparison clearly shows the value of adding additional LU classes – if all agricultural 

classes are aggregated, then it is impossible to take into account possible gains from particular 

crops (such as tomato). 
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Figure 38- Transformation characterization factors for a land use change to agriculture (tC/ha) 
for PNV as a reference state and based on the methodology proposed by Morais et al. (2016b).   

Figure 39 shows the distribution of transformation CFs calculated according to the method of 

Brandão and Milà i Canals et al. (2013). It depicts LUC to agriculture with PNV as a reference 

state. This map shows no regionalization of the assessments within the area of Alentejo. The CFs 

were established per climate region and therefore the entire region of Alentejo is given only one 

CF. The fact that there are no negative CFs once again shows, as in our assessment, that it is 

crucial to disaggregate agricultural classes as much as possible because specific crops impact 

soils differently. In terms of absolute value, the CFs in Morais et al. (2016b) are of the same order 

of magnitude of the CFs obtained in this dissertation. The CF of Brandão and Milà i Canals et al. 

(2013) is relatively lower. 

 

 

 
 
Figure 39 - Transformation characterization factors for a land use change to agricultural crop 
(tC/ha) for PNV as a reference state based on the methodology proposed by Brandão and Milà i 
Canals (2013). 

Another method that can be used as a comparison in this dissertation is the methodology of Milà 

i Canals et al. (2007). In this case, the transformation CF is 485 𝑘𝑔𝐶. 𝑚−2 for the entire globe. 

This means that the model was not regionalization and as such it is difficult to consider it relevant 

for the region of Alentejo. The difference in absolute values, however, highlights that using global 
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CFs is a pitfall that should be avoided in LCIA as global factors – particularly for aggregated LU 

classes – are irrelevant to the regional crop production. 

 

9.4 Discussion 

We found that results obtained using different reference states have different ranges and 

geographical distributions of CFs. It is then important to establish a common methodology on 

which reference state to be used in order to compare results of different assessments. The most 

important distinction found was, however, the disaggregation of LU classes. Only the CFs 

obtained in this dissertation considered specific agricultural LU sub-classes – tomato – while a 

broader category (agriculture) is used by Morais et al. (2016b), Brandão and Milà i Canals (2013) 

and Milà i Canals et al. (2007). We focused on this example of tomato here as demonstration, but 

similar results would be obtained if any other LU classes were considered. 

Comparing the results obtained using PNV as reference state in this dissertation with the results 

obtained using other models, we can see that in the case of occupation CFs the results have the 

same order of magnitude. The spatial distribution is not equal; in the case of this dissertation, the 

higher CFs values are on the southeast of Alentejo while in the case of Morais et al. (2016b) the 

highest values found are east and northwest. This is explained by the fact that Morais et al. 

(2016b) only provides CFs for aggregated agricultural uses, and does not discriminate for tomato 

(or any other crop). Another different aspect from the two maps obtained is the disaggregation of 

regions, which is much less detailed in the case of Morais et al. (2016b). 

Brandão and Milà i Canals (2013) and Milà i Canals et al. (2007) provide CFs with different orders 

of magnitude when compared to the results calculated.We can also  understand that assuming 

different regeneration times or simulation times will have an impact on the results, as it is the case 

of Brandão and Milà i Canals (2013), but the determinant for results are the number and 

disaggregation of LU classes and the regionalization of the CFs. The spatial distribution of CFs 

proposed by Brandão and Milà i Canals (2013) is homogeneous at the scale of Alentejo.   

In this models, regionalization takes into account parameter averages per biome (e.g. ecoregion, 

climate region) only. In the case of Milà i Canals et al. (2007) there is no regionalization. In our 

method, we used a more specific and disaggregated regionalization in order to identify 

homogenous regions within the biomes of Alentejo.  

9.5 Conclusions 
 
We were able to calculate CFs for occupation and transformation based on scenarios obtained 

from the RothC model. Our implementation of RothC can calculate CFs automatically, which will 

assist any future developments of this work. The occupation CFs are a good approximation in 

terms of magnitude to the values calculated according to Morais et al. (2016b). In the case of 

transformation CFs, the results proposed by this dissertation do not have similar magnitude 

values when compared to Milà i Canals et al. (2007) and with Brandão and Milà i Canals (2013) 

due to the different regeneration times assumed, the aggregation of LU classes and the 



76 

 

regionalization level of CFs. We can conclude that, a factor that limits the comparability of results 

is the time used for regeneration or simulation. One solution to this issue is to use RothC 

simulations results directly and calculate the regeneration times according to the intensity of the 

changes along the years. Looking at dynamic SOC curves, it would be possible to assume that 

SOC stabilizes not after 100 years but when the difference between SOC in year t+1 and t is 

lower than a given threshold. The regeneration time would then be t. This way it is possible to 

perform the same calculations described in this dissertation independently for each LUC in each 

region, with the most accurate regeneration times possible.   

At the moment, it is premature to claim that the CFs obtained in this thesis show that proxy-based 

models lead to misleading results. Given all limitations in this implementation of our method, the 

CFs we show here should not yet be used in LCIA. What they do show is the value of the 

procedure we established here – since it can facilitate the inclusion of more land use classes than 

proxy-based models, and the disaggregation of LU classes is crucial, this method should be 

further explored.  
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10. Conclusions 

The main objective of this dissertation was to understand the viability and accuracy of an LCIA 

application of process-based models to determine the impacts of LU and LUC. We developed 

one LCIA midpoint method of LU impacts using SOC as an indicator on soil quality. We wanted 

to test if process-based models can help obtain more accurate CFs and what are their limitations. 

This is a paradigm-shifting method, so far virtually untested, in which the CFs are calculated 

based on scenarios. This approach enabled a dynamic and regionalized assessment of soil 

quality. Process-based models also enable a regionalized assessment of soil dynamics based on 

scenarios that is less data-constricted than proxy-based models. Proxy-based models such as 

Morais et al. (2016b), who also use SOC depletion as the indicator, require large datasets on 

SOC distribution. They rely on statistically processed data and thus typically fail to include more 

than 4-7 LU classes. Process-based models, on the other hand, are limited by data only in what 

regards input variables and parameterization. Despite promising, as shown in this dissertation, 

these are also a number of significant limitations to point out next.  

Due to the computational limitations of the process-based models (i.e. running time) the region in 

study was Alentejo, Portugal, used as a proof of concept. This dissertation includes not only the 

implementation of the process-based models, but also a sensitivity analysis of the model RothC. 

In the end, we present a methodology that allowed the calculation of CFs based on the results 

obtained from the simulations of RothC. This dissertation presented a method that can be used 

globally, for the assessment of regionalized CFs for LU impacts, using SOC as a midpoint 

indicator for LCIA application. We were unable to implement successfully the DNDC simulations 

for Alentejo’s region. The first problem encountered was that the data required for DNDC was not 

always available, so we resorted to data that was non-region specific generalization for each crop. 

This by itself introduces uncertainty in calculations. Also, the running time for this model was 

extremely large. A simulation for all UHTUs would take 5 days to run. Using only one UHTU, we 

tested whether, despite limitations on running time, the results of the simulations were promising. 

The example UHTU showed that since the model was not correctly calibrated for the region of 

study, results were unusable. This unsuccessful experience with DNDC led us to focus on RothC. 

DNDC requires much more specific data then RothC, and consequently its implementation was 

harder. Also, the running time was higher than expected, and because we did not have access to 

the code, we could not re-write it in a different programming language as we did with RothC. This 

is an important comparison, because even though there is a need to regionalize LCIA and make 

assessments based on scenarios, we can see that a more complex model will carry practical 

limitations. We can conclude than that the frontier design at Figure 9 has a deep relevance when 

choosing a model to work with for a LCA study. In our case, we also concluded that, for the time 

available to do the study and the computational limitations that we had, RothC is a more balanced 

model, that can be computationally doable and the same time sufficiently complex to be a step 

forward from proxy-based models. Additionally, the implementation of RothC in Matlab should 
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from now facilitate the calculations involved due to a lower running time. This may, in the future, 

allow studies such as this one to increase the spatial range, i.e. Europe and the entire world.  

Another main limitation encountered in this dissertation was the data quality for carbon in crop 

residues. This is a crucial input variable necessary in RothC. This input value has a major impact 

in the results, as we could understand in the sensitivity analysis, since the values available in the 

literature have different orders of magnitude for the same region and the same crop. To make 

these simulations the more accurate possible, it is important to have better information of these 

values. Having more regionalized data accessible would be a great improvement since, as 

mentioned before, process-based models are also limited by data, albeit less, than proxy-based 

models – in this case data for input variables.  

When making regionalized assessments as was the case here, rather than site-specific 

implementations of the models that often resort to measured data, it is challenging to access all 

the data needed. We often resorted to assuming for instance validity of data originally obtained 

for other regions. These assumptions added to the uncertainty of results.  

Another problematic aspect encountered in the data were the values of SOC from the LUCAS 

Topsoil database. When overlapping the CLC map of LUs with LUCAS Topsoil database we found 

that there were values for the artificial areas much larger that for forest areas. This may be due 

to sampling – “urban” areas are often assumed to be “artificial” areas but a large proportion of 

these are vegetated. The difference in SOC between natural and artificially vegetated areas may 

in effect not be as high as expected. It may also mean that the uncertainty in the measurements 

are high. In any case, initial SOC is another crucial parameter whose determination at regional 

levels ignores many of the site-specific natural variability. 

For the case of RothC simulations, we were unable to successfully implement a Monte Carlo 

simulation that estimates the uncertainty associated with the simulations. This problem was due 

to the high standard deviations of some input data. This is a consequence of low availability and/or 

quality of climate and crop data, i.e. lack of longer time series and stations. The solutions 

proposed to overcome this limitation in the future are to recalculate the input values using a 

different method, obtaining the values from different sources (although by this time, the most 

regionalized sources freely available were the ones used in this dissertation), or to desegregate 

our UHTUs in order to diminish the standard deviation associated to the initial SOC and clay 

fraction input parameters. If this problem would be successfully resolved, then it would be possible 

to perform a Monte Carlo simulation for our assessments. This approach should be explored in 

the future as it will enable the calculation of error of the CFs (which proxy-based models rarely 

indicate). For the purpose of this dissertation, to overcome this specific limitation, we used a best 

estimate approach to calculate CFs based on SOC curves. This approach simply takes the 

average/most likely values of the input parameters for the simulations with RothC. This is an 

important limitation that reduces the usability of the CFs obtained in the end, but it allowed us to 

proceed and obtain the conclusions described next. 

After running al the simulations, the Matlab implementation of RothC enabled us to fit the curves 

obtained on the simulations. This fit was successful even though it had some error associated. It 
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is important to consider that RothC is a non-linear and complex model, and being able to fit the 

results to one equation with only three coefficients was an only a simplification to facilitate the 

calculation of CFs. This step was necessary only to simplify the calculation of CFs. 

We were able in the end to calculate CFs for occupation and transformation. Given all the 

limitations associated with their calculation and the demonstrative goals of this dissertation, we 

believe the CFs cannot yet be used in LCIA before the future additional work indicated before to 

solve each issue. However, their calculation provided additional important insights. The 

comparison of the results with other proxy-based model CFs proposed in literature was the 

number and disaggregation of LU classes. In our example, we showed that models that aggregate 

all agricultural crops will not capture the spatial distribution of the impacts of particular crops, such 

as tomato. Additional factors are the regeneration time and simulation time. Our transformation 

CFs were higher than the CFs of Brandão and Milà i Canals (2013). This is a consequence of the 

higher regeneration time assumed in this dissertation. This will then lead, according to our model, 

to an accumulation of the gains and losses of SOM over the years. We propose as future work to 

obtain more accurate regeneration times using the results obtained from RothC. One important 

limitation of this dissertation is the use of a fixed time horizon of 100 years used for the simulations 

of DNDC and RothC, as well as for regeneration time in CF calculations. This was a simplification 

that can be corrected in the future. The correct approach for their calculation would be to use the 

regeneration time for each crop, i.e., the time that takes for the SOC curve to stabilize. This 

regeneration times can be obtained by finding the saturation points that indicate when the curve 

of SOC stabilize, thereby indicating how many years it takes for the regeneration of the LU. This 

fact influences directly the calculation of the transformation and occupation CFs. Using a fixed 

regeneration time results in an over or under-estimation of the CFs for each LU class. With our 

proposed fix it is possible to calculate CFs based on regeneration times that will be dependent 

not only on the LUC but also on the specific characteristics of each region. This approach of the 

regeneration times calculation can be used not only for the method proposed in this dissertation 

but also for proxy-based models.  

As additional further work, we suggest LCIA model developers work with process-based models 

and better and data. Monte Carlo simulations are a powerful tool to calculate error distributions 

for CFs, but only if probability distributions for all input variables can be rigorously defined. Another 

recommendation for further work is to determine regeneration times in models such as RothC, 

and then use them in proxy-based models. As mentioned, this requires abandoning the 

assumption of a 100-year time frame, which was used in this dissertation, and determine 

regeneration times for each LU class depending on the shape of the SOC dynamic curve. More 

efficient computational models are also required to enable these assessments for the entire world. 

It is also important to have models that allow a specific parameterization made by the user. This 

will enable accurate results dependent on the specific region, preventing situations like the one 

here presented for DNDC. For the specific case of LCA, it is also important to have simple models 

that can accurately simulate the dynamics of soils at regional rather than plot level, that require 

input parameters that are freely available and that are easy for the user to run. A standardized 
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method on how to draw the specific UHTUs is also needed in order to compare process-based 

and proxy-based models. It is also important to keep assessing CFs using detailed LU classes 

like the ones of this dissertation (e.g. tomato, orange and others), and not only broad categories.  
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Appendix 
 

Table 27- Crop Carbon Residues values with respective References and Methodologies of calculation. Where 

Res/Crop is the ratio of Residues and Crop Productivity; Res is Residues amount; HI is harvest index; S:R is shoot to 

root ratio. 

Crop Type Values Values Reference tC/ha 

Tomato 

 

Res/Crop 0.3 

0.3 

1 

0.07 

Blasi et al. (1997) 

ISPRA (2016) 

SEMA (2016) 

Dias and Azevedo (2004) 

9.7 

9.7 

32.368 

2.265 

Res (t/ha) 1.69 

 

Alves (1995) in Dias 

(2002) 

0.76 

HI 0.415 Ventrela et al. (2012) 64.198 

S:R 4.2 Ghanem et al. (2011) 

Oats Res/Crop 0.86 

1.3 

0.175 

1 

1.3 

0.7 

Dias and Azevedo (2004) 

SEMA (2016) 

ISPRA (2016) 

Dias (2002) 

APA (2011) 

Blasi et al.(1997) 

6.65 

10.06 

1.354 

7.739 

10.06 

5.417 

HI rainfed 0.44 Fuentes et al. (2014) 9.853 

S:R rainfed 4.12 Jebari (2016) 

Barley 

 

Res/Crop 1.2 

0.8 

0.86 

0.2 

APA (2011) 

Blasi et al. (1997) 

Dias and Azevedo (2004) 

ISPRA (2016) 

0.991 

0.661 

0.710 

0.165 

Wheat 

 

Res/Crop 0.86 

1.3 

0.1725 

1.3 

0.7 

Dias and Azevedo (2004) 

SEMA (2016) 

ISPRA (2016) 

APA (2011) 

Blasi et al. (1997) 

0.707 

1.068 

0.141 

1.068 

0.575 

S:R rainfed 4.12 Jebari (2016)  

0.702 

 

HI rainfed 0.67 Vleeshouwers and 

Verhagen (2001) 

0.44 Fuentes et al. (2014) 1.499 

S:R irrigated 7.66 Fuentes et al. (2014)  

1.689 HI irrigated 0.37 Erice et al. (2014) 

0.43 Dauden et al. (2004) 1.339 

Pasture Res (tC/ha) 0.8 Knabner (2002) 0.8 

Maize Forage Res/crop 0.72 Dias and Azevedo (2004) 17.377 



92 

 

 1 

0.13 

0.09 

SEMA (2016) 

ISPRA (2016) 

APA (2011) 

24.134 

3.137 

0.521 

Res (tC/ha) 1 Knabner (2002) 1 

HI irrigated 0.48 Berenguer et al. (2009) 48.897 

S:R irrigated 2.21 Vamereli et al. (2003) 

Maize 

 

Res/crop 0.72 

1 

0.13 

1 

Dias and Azevedo (2004) 

SEMA (2016) 

ISPRA (2016) 

APA (2011) 

3.5 

4.87 

0.633 

4.87 

Res (tC/ha) 1 Knabner (2002) 1 

HI irrigated 0.48 Berenguer et al. (2009) 21.929 

S:R irrigated 2.21 Vamereli et al. (2003) 

Rice 

 

Res/Crop 0.7 

1.4 

0.1675 

1.4 

1.7 

Dias and Azevedo (2004) 

SEMA (2016) 

ISPRA (2016) 

APA (2011) 

Vlyssides et al. (2015) 

1.929 

3.858 

0.46 

3.858 

4.685 

HI 0.56 Carreres et al. (2010)  

Peach Tree 

 

Res/Crop 0.41 

0.16 

1 

0.2 

Dias and Azevedo (2004) 

SEMA (2016) 

APA (2011) 

Blasi et al. (1997) 

2.536 

0.989 

6.185 

1.237 

Orange Tree 

 

Res/Crop 0.15 

0.07 

1 

0.1 

Dias and Azevedo (2004) 

SEMA (2016) 

APA (2011) 

Blasi et al. (1997) 

0.59 

0.275 

3.934 

0.874 

Grape 

 

Res/Crop 0.4 

0.39 

0.43 

1 

Blasi et al. (1997) 

Dias and Azevedo (2004) 

SEMA (2016) 

APA (2011) 

0.979 

0.954 

1.052 

2.447 

Res (t/ha) 3.58 Velazquez et al. (2011) 1.305 

Olive 

 

Res/Crop 0.47 

1.13 

1 

2.6 

Dias and Azevedo (2004) 

SEMA (2016) 

APA (2011) 

Blasi et al. (1997) in 

Vlyssides et al. (2015)  

0.311 

0.749 

0.662 

1.723 

Res (t/ha) 1.22 

3.8 

Aguilera et al. (2015) 

Nieto et al. (2010) 

0.549 

1.71 

Potato Res/Crop 0.4 SEMA (2016) 3.035 
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 0.4 

 

0.4 

Blasi (1997) in Vlyssides 

et al. (2015)  

APA (2011) 

3.035 

 

3.035 

Pine Res (t/ha) 0.271 

1.63 

Dias and Azevedo (2004) 

Dias and Azevedo (2004) 

0.12195 

0.7335 

Res (tC/ha) 2.96 APA (2015) 2.96 

Eucalyptus Res (t/ha) 0.546 Dias and Azevedo (2004) 0.2457 

Res (tC/ha) 2.04 APA (2015) 2.04 

Cork Res (tC/ha) 1.85 APA (2015) 1.85 

Holmoak Res (tC/ha) 2.04 APA (2015) 2.04 

Oak  Res (tC/ha) 1.85 APA (2015) 1.85 

Shrublands Res(tC/ha) 0.68 

4.96 

Roura et al. (2011) 

Rosa (2009) in APA 

(2015) 

0.68  

4.96 

Grasslands Res(tC/ha) 0.8 

0.41 

Roura et al. (2011) 

APA (2015) 

0.8 

0.41 
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Figure 40- UHTU 106 SOC values through 100 years (points) and respective curve fit (blue line) obtained by 

Exponential 1st degree equation (first graph). Residuals Plot obtained from the fit represented above (second graph). 

 

 

Figure 41- UHTU 1 SOC values through 100 years (points) and respective curve fit (blue line) obtained by Exponential 

1st degree equation (first graph). Residuals Plot obtained from the fit represented above (second graph). 
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Figure 42- UHTU 106 SOC values through 100 years (points) and respective curve fit (blue line) obtained by 

Polynomial 2nd degree equation (first graph). Residuals Plot obtained from the fit represented above (second graph). 
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Figure 43- UHTU 1 SOC values through 100 years (points) and respective curve fit (blue line) obtained by Polynomial 

2nd degree equation (first graph). Residuals Plot obtained from the fit represented above (second graph). 

 

 
Table 28- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to oat. 

Final land use (tC/ha) Oat Best 
Estimate 

Oat 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -3.7 -8.5 9.3 

Non-Irrigated Arable Land -6.5 -10.5 10.3 

Pastures -12.5 -18.0 12.1 

Wetlands -15.6 -18.9 14.0 

Permanently Irrigated Land -2.4 -6.1 9.4 

Rice -3.7 -6.9 9.3 

Vineyards 0.1 -4.7 9.1 

Fruit trees and berry plantations -0.1 -5.1 8.9 

Olive Groves -2.9 -7.1 10.0 

Agro-forestry areas -9.4 -13.7 10.6 

Broad-leaved forest -16.0 -20.0 12.2 

Coniferous forest -19.6 -23.3 12.1 

Mixed Forest -20.5 -24.0 13.1 

Forest -16.9 -20.9 12.8 
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Table 29- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to potato.  

Final land use (tC/ha) Potato Best 
Estimate 

Potato 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 15.4 9.9 13.9 

Non-Irrigated Arable Land 10.9 7.0 14.5 

Pastures 5.1 -0.9 16.7 

Wetlands 1.0 -1.1 17.3 

Permanently Irrigated Land 15.6 12.1 13.8 

Rice 14.4 11.3 13.5 

Vineyards 19.2 14.0 13.8 

Fruit trees and berry plantations 19.1 13.5 14.2 

Olive Groves 15.4 11.2 14.5 

Agro-forestry areas 7.4 3.2 14.8 

Broad-leaved forest -0.4 -4.0 16.0 

Coniferous forest -4.4 -7.8 16.2 

Mixed Forest -5.5 -7.9 17.2 

Forest -1.1 -5.0 16.7 

 

 
 
Table 30- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to maize 
irrigated. 

Final land use (tC/ha) Maize 
Irrigated Best 

Estimate 

Maize Irrigated 
100 iterations 

Standard 
Deviation 

Artificial Surfaces -9.1 -13.0 8.3 

Non-Irrigated Arable Land -10.3 -14.1 9.3 

Pastures -16.6 -21.7 11.3 

Wetlands -18.8 -21.7 13.1 

Permanently Irrigated Land -6.5 -9.8 8.3 

Rice -6.9 -10.3 8.2 

Vineyards -4.2 -8.5 8.0 

Fruit trees and berry plantations -4.4 -8.9 7.8 

Olive Groves -7.2 -11.0 8.8 

Agro-forestry areas -13.1 -16.9 9.9 

Broad-leaved forest -19.2 -23.3 11.1 

Coniferous forest -22.2 -26.4 10.9 

Mixed Forest -23.3 -26.6 12.4 

Forest -20.2 -24.3 11.8 
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Table 31- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to forage maize.  

Final land use (tC/ha) Forage Maize 
Best 

Estimate 

Forage Maize 
100 iterations 

Standard 
Deviation 

Artificial Surfaces -12.5 -16.2 7.7 

Non-irrigated Arable Land -13.7 -17.1 8.9 

Pastures -20.0 -24.7 10.7 

Wetlands -22.0 -25.1 12.4 

Permanently Irrigated Land -9.9 -12.7 7.9 

Rice -10.3 -13.3 7.8 

Vineyards -7.8 -11.6 7.5 

Fruit trees and berry plantations -8.0 -11.8 7.1 

Olive Groves -10.7 -14.1 8.2 

Agro-forestry areas -16.4 -19.9 9.1 

Broad-leaved forest -22.5 -26.2 10.7 

Coniferous forest -25.3 -29.1 10.8 

Mixed Forest -26.4 -29.6 11.8 

Forest -23.5 -27.0 11.5 

 

 
Table 32- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to rice.  

Final land use (tC/ha) Rice Best 
Estimate 

Rice 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -6.4 -12.1 8.9 

Non-Irrigated Arable Land -7.8 -13.3 9.9 

Pastures -14.0 -21.1 11.8 

Wetlands -16.3 -21.8 13.2 

Permanently Irrigated Land -4.0 -8.8 8.9 

Rice -4.3 -8.9 9.0 

Vineyards -1.4 -7.1 8.7 

Fruit trees and berry plantations -1.6 -7.7 8.4 

Olive Groves -4.6 -10.1 9.3 

Agro-forestry areas -10.7 -16.2 10.2 

Broad-leaved forest -16.9 -22.9 11.6 

Coniferous forest -20.1 -25.7 11.8 

Mixed Forest -21.3 -26.6 12.8 

Forest -17.9 -23.9 12.5 
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Table 33- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to vineyards.  

Final land use (tC/ha) Vineyards 
Best 

Estimate 

Vineyards 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -5.1 -9.8 9.7 

Non-Irrigated Arable Land -6.4 -11.0 10.4 

Pastures -13.6 -19.9 12.3 

Wetlands -15.4 -19.9 13.4 

Permanently Irrigated Land -2.0 -5.9 9.5 

Rice -3.4 -6.6 9.2 

Vineyards 0.8 -4.3 9.5 

Fruit trees and berry plantations 1.3 -4.5 9.6 

Olive Groves -2.1 -7.3 10.2 

Agro-forestry areas -9.9 -14.5 10.8 

Broad-leaved forest -17.5 -22.0 12.1 

Coniferous forest -21.5 -25.3 12.3 

Mixed Forest -22.5 -26.1 13.0 

Forest -18.5 -23.1 12.9 

 

 
Table 34- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to orange. 

Final land use (tC/ha) Orange Best 
Estimate 

Orange 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 4.1 -1.6 10.5 

Non-Irrigated Arable Land 2.7 -2.6 11.5 

Pastures -3.2 -9.9 13.5 

Wetlands -6.7 -11.5 14.6 

Permanently Irrigated Land 6.6 1.7 10.6 

Rice 6.1 1.5 10.4 

Vineyards 9.4 3.2 10.4 

Fruit trees and berry plantations 9.3 3.1 10.1 

Olive Groves 6.1 0.7 11.1 

Agro-forestry areas -0.3 -5.6 11.9 

Broad-leaved forest -6.8 -12.1 13.2 

Coniferous forest -10.2 -15.3 13.5 

Mixed Forest -11.3 -16.1 14.2 

Forest -7.6 -13.1 13.8 
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Table 35- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to peach.  

Final land use (tC/ha) Peach Best 
Estimate 

Peach 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 5.5 -0.3 10.7 

Non-Irrigated Arable Land 4.0 -1.2 11.8 

Pastures -1.9 -9.1 13.6 

Wetlands -5.5 -8.7 15.3 

Permanently Irrigated Land 7.9 3.1 10.8 

Rice 7.4 2.6 10.8 

Vineyards 10.8 4.7 10.7 

Fruit trees and berry plantations 10.7 4.4 10.7 

Olive Groves 7.5 2.0 11.3 

Agro-forestry areas 1.0 -4.6 12.1 

Broad-leaved forest -5.5 -11.2 13.4 

Coniferous forest -8.9 -14.0 13.5 

Mixed Forest -10.0 -14.8 14.4 

Forest -6.4 -12.1 14.0 

 

 
Table 36- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to olive irrigated.  

Final land use (tC/ha) Olive 
Irrigated Best 

Estimate 

Olive Irrigated 
100 iterations 

Standard 
Deviation 

Artificial Surfaces -5.1 -10.9 9.5 

Non-Irrigated Arable Land -8.0 -12.7 10.2 

Pastures -15.1 -21.4 12.1 

Wetlands -17.2 -21.5 13.4 

Permanently Irrigated Land -3.3 -7.7 9.4 

Rice -4.3 -8.6 9.2 

Vineyards -0.7 -6.4 9.2 

Fruit trees and berry plantations -1.0 -6.6 9.2 

Olive Groves -4.1 -8.8 9.9 

Agro-forestry areas -11.3 -16.2 10.5 

Broad-leaved forest -18.8 -23.6 11.7 

Coniferous forest -22.3 -27.5 11.6 

Mixed Forest -23.5 -27.9 12.7 

Forest -19.8 -24.6 12.3 
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Table 37- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to pasture. 

Final land use (tC/ha) Pasture Best 
Estimate 

Pasture 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -8.5 -12.5 7.7 

Non-Irrigated Arable Land -10.6 -13.8 9.0 

Pastures -16.2 -20.7 10.8 

Wetlands -17.3 -20.6 12.7 

Permanently Irrigated Land -7.0 -9.9 8.0 

Rice -7.6 -10.5 7.8 

Vineyards -5.0 -8.7 7.5 

Fruit trees and berry plantations -5.3 -9.0 7.2 

Olive Groves -7.7 -11.1 8.4 

Agro-forestry areas -13.1 -16.5 9.3 

Broad-leaved forest -18.8 -22.3 10.8 

Coniferous forest -21.3 -24.9 10.7 

Mixed Forest -22.2 -25.6 11.7 

Forest -19.7 -23.2 11.7 

 

 
Table 38 - SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to oak. 

Final land use (tC/ha) Oak Best 
Estimate 

Oak 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 17.4 9.6 12.7 

Non-Irrigated Arable Land 13.7 7.5 13.4 

Pastures 9.0 0.7 15.6 

Wetlands 6.0 1.4 18.1 

Permanently Irrigated Land 17.5 11.4 12.4 

Rice 16.6 11.0 12.3 

Vineyards 20.8 13.2 12.3 

Fruit trees and berry plantations 20.6 12.9 12.2 

Olive Groves 17.4 10.5 13.0 

Agro-forestry areas 11.0 4.5 13.8 

Broad-leaved forest 4.5 -1.5 15.0 

Coniferous forest 1.5 -4.7 14.9 

Mixed Forest 0.5 -5.0 15.9 

Forest 3.9 -2.3 15.8 
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Table 39- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to eucalyptus.  

Final land use (tC/ha) Eucalyptus 
Best 

Estimate 

Eucalyptus 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 17.4 12.8 13.4 

Non-Irrigated Arable Land 13.7 10.7 14.1 

Pastures 9.0 4.1 15.9 

Wetlands 6.0 4.1 17.9 

Permanently Irrigated Land 17.5 14.7 13.2 

Rice 16.6 14.3 13.2 

Vineyards 20.8 16.6 13.2 

Fruit trees and berry plantations 20.6 16.3 13.6 

Olive Groves 17.4 14.1 13.7 

Agro-forestry areas 11.0 7.7 14.2 

Broad-leaved forest 4.5 1.6 15.6 

Coniferous forest 1.5 -1.3 15.7 

Mixed Forest 0.5 -1.8 16.6 

Forest 3.9 0.8 16.5 

 

 
Table 40- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to holmoak.  

Final land use (tC/ha) Holmoak 
Best 

Estimate 

Holmoak 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 17.4 12.8 13.4 

Non-Irrigated Arable Land 13.7 10.7 14.1 

Pastures 9.0 4.1 15.9 

Wetlands 6.0 4.1 17.9 

Permanently Irrigated Land 17.5 14.7 13.2 

Rice 16.6 14.3 13.2 

Vineyards 20.8 16.6 13.2 

Fruit trees and berry plantations 20.6 16.3 13.6 

Olive Groves 17.4 14.1 13.7 

Agro-forestry areas 11.0 7.7 14.2 

Broad-leaved forest 4.5 1.6 15.6 

Coniferous forest 1.5 -1.3 15.7 

Mixed Forest 0.5 -1.8 16.6 

Forest 3.9 0.8 16.5 
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Table 41- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to shrublands.  

Final land use (tC/ha) Shrublands 
Best 

Estimate 

Shrublands 100 
iterations 

Standard 
Deviation 

Artificial Surfaces 30.4 21.4 14.4 

Non-Irrigated Arable Land 26.3 18.9 15.1 

Pastures 21.9 12.4 17.0 

Wetlands 18.3 11.7 18.9 

Permanently Irrigated Land 30.2 23.1 14.4 

Rice 29.2 22.5 13.8 

Vineyards 33.9 25.1 14.4 

Fruit trees and berry plantations 33.7 25.1 14.5 

Olive Groves 30.3 22.5 14.9 

Agro-forestry areas 23.2 15.7 15.4 

Broad-leaved forest 16.5 9.7 16.7 

Coniferous forest 13.1 6.3 16.2 

Mixed Forest 12.2 5.8 17.4 

Forest 16.0 8.8 17.2 

 

 
Table 42- SOC change (𝑆𝑂𝐶𝑦𝑒𝑎𝑟 100 − 𝑆𝑂𝐶𝑦𝑒𝑎𝑟 1) mean values for best estimate and 100 

iterations and respective standard deviation for the last case. Land use change to grassland.  

Final land use (tC/ha) Grassland 
Best 

Estimate 

Grassland 100 
iterations 

Standard 
Deviation 

Artificial Surfaces -10.2 -13.2 7.6 

Non-Irrigated Arable Land -11.2 -14.1 8.9 

Pastures -17.0 -21.1 10.7 

Wetlands -17.7 -19.5 13.5 

Permanently Irrigated Land -7.8 -10.3 7.9 

Rice -8.6 -10.8 7.6 

Vineyards -5.8 -9.1 7.4 

Fruit trees and berry plantations -5.6 -9.3 7.0 

Olive Groves -8.1 -11.3 8.3 

Agro-forestry areas -13.8 -17.1 9.2 

Broad-leaved forest -19.6 -22.7 10.8 

Coniferous forest -22.4 -25.3 10.5 

Mixed Forest -23.2 -25.7 11.9 

Forest 3.9 0.8 16.5 

 

 

 


